
Using BiLSTM in Dependency Parsing for
Vietnamese

Luong Nguyen Thi, Linh Ha My, Huyen Nguyen Thi Minh, Phuong Le-Hong

Dalat University, Lamdong, Vietnam, Email:luongnt@dlu.edu.vn
VNU University of Science, Hanoi, Vietnam, Email: halinh.hus@gmail.com,

huyenntm@vnu.edu.vn, phuonglh@vnu.edu.vn

Abstract. Recently, deep learning methods have achieved good results
in dependency parsing for many natural languages. In this paper, we in-
vestigate the use of bidirectional long short-term memory network mod-
els for both transition-based and graph-based dependency parsing for
the Vietnamese language. We also report our contribution in building a
Vietnamese dependency treebank whose tagset conforms to the Univer-
sal Dependency schema. Various experiments demonstrate the efficiency
of this method, which achieves the best parsing accuracy in comparison
to other existing approaches on the same corpus, with unlabeled attach-
ment score of 84.45% or labeled attachment score of 78.56%.

1 Introduction

Dependency parsing consists of graph-based and transition-based parser (Kubler
et al.,2009). Given sentence s, a graph-based algorithm finds the highest scoring
parse tree from all possible outputs while a transition-based algorithm builds
a parse by a sequence of actions. In recent years, many researchers have devel-
oped deep learning approaches with high accuracy in English, Chinese,etc. Chen
and Manning proposed a novel way of learning a neural network classifier in
a greedy, transition-based dependency parser which achieved USA=92.2% and
LSA=89.7% on the English Penn Treebank [1]. Dyer et al. (2015) [2] also pre-
sented stack LSTMs, recurrent neural networks for sequences, with push and
pop operations, and used them to implement a state-of-the-art of transition-
based dependency parser with USA=93.2% and LSA=90.9% in English. Kiper-
wasser et al. (2016) [3] presented a simple and effective scheme for dependency
parsing based on bidirectional-LSTMs (BiLSTMs) which had USA=93.8% and
LSA=91.5% for English. Besides, Dozat and Manning (2016) [4] have recently
inherited from Kiperwasser et al. using neural attention in a simple graph-based
dependency parser. Their parser gained a state-of- the-art or its performance on
standard treebanks in six different languages, achieving 95.7% UAS and 94.1%
LAS on the most popular English PTB dataset.

Regarding Vietnamese dependency parsing, there have been many contri-
butions to parsing. In 2008, Nguyễn Lê Minh et al. [5] used MST parser on a
corpus consisting of 450 sentences. Then, in 2012, Phuong Le et al.[6] applied a

lexicalized tree-adjoining grammar parser trained on a subset of the Vietnamese
treebank. In 2013, Thi-Luong et al. [7] used MaltParser on a Vietnamese depen-
dency treebank which is converted automatically from a Vietnamese treebank.
One year later, Dat et al. [8] also presented a new conversion method to auto-
matically transform a constituent-based Vietnamese Treebank into dependency
trees. In 2015, Phuong Le et al. [9] improved accuracy of Vietnamese depen-
dency parsing, used distributed word representations with Skip-gram and GloVe
model for transition-based dependency parsing. In 2016, Thi-Luong et al. [10]
also used distributed word representations with Skip-gram in graph-based de-
pendency parsing for Vietnamese and Dat et al. [11] presented an empirical
study for Vietnamese dependency parsing. In 2017, Kiem Hieu [12] presented
their work on building BKTreebank, a dependency treebank for Vietnamese.

1.1 Transition-based dependency parsing

The transition system has a set of configurations and a set of transitions which
are applied to configurating. By parsing a sentence, the system is initialized to an
initial configuration based on the input sentence, and transitions are repeatedly
applied to this configuration. After a finite number of transitions, the system
arrives at a terminal configuration, and a parse tree is read off the terminal
configuration. In a greedy parser, a classifier is used to choose the transition and
take in each configuration, based on features extracted from the configuration
itself. The parsing algorithm is presented in Algorithm 1 below.

Algorithm 1 Greedy transision-based parsing
Require: Sentence s = w1, w2, ..., xw, t+ 1, ..., tn.
parameterized function SCOREθ(.) with parameters θ

Ensure: Tree of s
c←− INITIAL(s)
while not TERMINAL(c) do
t ←− argmaxt∈LEGAL(c)SCOREθ(Φ(c), t)
c←− t

end while
return tree(c)

Many transition-based systems [13] are popular such as arg-eager algorithm,
arg-standard algorithm. However in this work, we employ the arc-hybrid system
which is similar to these. In the arc-hybrid system, a configuration c = (α, β, T)
consists of a stack α, a buffer β, and a set T of dependency arcs. Both the
stack and the buffer hold integer indices pointing to sentence elements. Given
a sentence s = w1, w2, ..., wn, the system is initialized with an empty stack, an
empty arc set, and β = 1, ..., n,ROOT , where ROOT is the special root index.
Any configuration c with an empty stack and a buffer containing only ROOT
is terminal, and the parse tree is given by the arc set Tc of c. The arc-hybrid
system allows 3 possible transitions, SHIFT, LEFT and RIGHT, defined as:

– SHIFT [(α, b0|β, T)] = (α|b0, β, T)
– LEFTl[(α|s1|s0, b0|β, T)] = (α|s1, b0|β, T ∪ {(b0, s0, l)})
– RIGHl[(α|s1|s0, β, T)] = (α|s1, β, T ∪ {(s1, s0, l)})

1.2 Graph-based dependency parsing

The second approach is the graph-based dependency parsing algorithm intro-
duced by McDonald et al. [14]. In this algorithm, the weights of the edges are
calculated for building dependency graphs of a sentence as follows:

s(i, j) = w.f(i, j)

where w is the weight of the (i, j) edge, f(i, j) is feature of (i, j) edge. The weight
of (i, j) edge represents the ability to create a dependency between the head (wi)
and the dependence (wj). If the arc score function is known, then the weight of
graph is:

S(G = (V,E)) =
∑

(i,j) s(i, j)

Then, based on the weights of all edges in graph, McDonald et al. [15] showed
that this problem is equivalent to finding the highest scoring directed spanning
tree for the graph G originating out of the root node 0.

1.3 Long short-term memory

Recurrent Neural Network The recurrent neural network (RNN) is a class
of artificial neural network designed for sequence labeling task. It takes input as
a sequence of vector and returns another sequence. The simple architecture of
RNN has an input layer x, hidden layer h and output layer y. At each time step
t, the values of each layer are computed as follows:

ht = fh(Wihxt +Whhht−1)
yt = fo(Whoht)

where Wih,Whh and Who are the three connection weight matrices and fh and
fo that are sigmoid and softmax are the hidden and output unit activation func-
tions.
Long Short-Term Memory Long Short-Term Memory (LSTM) was first pro-
posed in 1997 by Sepp Hochreiter et al. [16]. LSTM is an extended model of
RNN which is designed to combat with these vanishing and exploding gradi-
ent problems when learning with long-range sequences. LSTM networks are the
same as RNN, except that the hidden layer updates are replaced by memory
cells. Figure 1 shows a LSTM cell, including i, f, o are the input,forget and
output gates, respectively.c and c̃ denote the memory cell content. LSTM cell
calculates a hidden state st as following equations: where σ is the element-wise
sigmoid function and � is the element-wise product, i, f, o and c are the input
gate, forget gate, output gate, and cell vector respectively. U i, Uf , U c, Uo are
connection weight matrices between input x and gates, and W i,W f ,W c,W o

i = σ(U ixt +W iht−1)

f = σ(Ufxt +W fht−1)
c̃t = tanh(Ucxt +W cht−1)
o = σ(Uoxt +W oht−1)
g = tanh(Ugxt +W ght−1)
ct = ct−1 � f + g � i
ht = tanh(ct)� o

Fig. 1. Long Short-Term Memory cell

are connection weight matrices between gates and hidden state h.
Bidirectional Long Short-Term Memory The original LSTM uses only pre-
vious contexts for prediction. For many sequence labeling tasks, it is advisable
to take the contexts from two directions. Bidirectional LSTM utilizes both the
previous and future context by processing the sequence in two directions, and
generate two independent sequences of LSTM output vectors.

2 Approach

2.1 Universal dependency parsing in Vietnamese

Universal dependency The dependency label represents the dependence be-
tween the two words in the sentence. Each pair of words, in different positions,
will have a different dependency label. There is a general conversion rule to do
the dependency label which is uniform throughout the language. There are many
sets of relational labels for a language which are different from each others.

The Universal dependencies - UD1 was developed by the Stanford University
team, Marneffe et al. [17]. This is a project developed based on the treebank
annotation for multi-language, with the goal of facilitating the development of
multilingual parsing, cross-language learning, research and analysis from the
perspective of the type of language. This project was developed based on the
Stanford Dependency - SD dependency labels, also by the Stanford University
team (Marneffe et al., 2015) based on multi-lingual labels (Petrov et al., 2012)
and the magnetic word form (Zeman, 2008).

The general objective of developing Universal dependencies is to provide a
labels set and guidelines to facilitate the construction of of similar works for other
languages and allow expansion to a new language. The labels in SD are organized
in groups of subject, object, clauses, word definitions, or nouns. Stanford offers
nearly 50 types of English dependencies based-on PennTreebank corpus. All of
these dependencies are twofold: between a head word and its dependent word.
Each relation is given by three components: dependency label, head word and
dependent word.

Universal dependencies can be applied to many different languages, which
can be used to suggest improvements in dependency parsing, even for English.
1 http://universaldependencies.org/guidelines.html

This research team has developed a core label set that has been extensively
tested in a variety of languages, meaning that this core label set can be applied
in many different languages. It is also possible to add new labels as needed by
categorizing special linguistic relationships, or for individual cases of one or more
groups of languages. This label set may correspond to many different languages
such as English, French, German, Chinese This label is useful because it can
indicate a dependency for the same sentence, in different languages.

Universal dependencies contain 40 labels that were organized to allow prin-
ciples of the UD taxonomy such that rows correspond to functional categories in
relation to the head (core arguments of clausal predicates, non-core dependents of
clausal predicates, and dependents of nominals) while the columns correspond to
structural categories of the dependent (nominals, clauses, modifier words, func-
tion words) as in table 1. All of Universal dependencies are defined and there
are specific examples that can use to develop and build a complete label for the
others language.

Table 1. Dependencies in universal Stanford Dependencies

Nominals Clauses Modifier words Function Words
Core nsubj csubj

arguments obj ccomp
iobj xcomp

Non-core nsubj csubj
arguments obl advcl advmod aux

vocative discourse
expl

dislocated
Coordination MWE Loose Special Other

conj fixed list orphan punct
cc flat parataxis goeswith root

compound reparandum dep

Vietnamese dependencies Based-on universal dependencies and Viettree-
bank, we has built a Vietnamese dependencies. This set has labels that coincide
with the labels in the UD and several new labels. The Vietnamese dependencies
set has 46 labels. Some of the dependent labels that we have designed specifically
for Vietnamese:
– csubj:asubj (adjective subject: A adjective subject is an adjective phrase

which is the syntactic subject of a clause. In Vietnamese, the subject is
usually a noun (or a noun phrase), but there are some cases adjectives be
the subject.
• Xa_xa là hố bom.

Xa_xa là hố bom .
1 2 3 4 5

root

csubj:asubj

cop nn

punct

– csubj:vsubj (verb subject): This is used to describe the phenomenon as a verb
is a subject of a sentence. In Vietnamese, the subject is usually a noun, but
there are some cases adjective, verb, clause can do the subject of a sentence.

• Học tập là nhiệm vụ chính → csubj:vsubj(là, học tập)

Học_tập là nhiệm_vụ chính .
1 2 3 4 5

root

csubj:vsubj dobj amod

punct

– nc (classifier noun): This relation represents the relationship between a clas-
sifier noun with common nouns. The classifier noun always stands before the
common noun, for example, “cái”, “con ”, . . .
• Hai con mèo đen đang ăn cá. → nc(mèo, con)

Hai con mèo đang ăn cá .
1 2 3 4 5 6 7

root

num nc

nsubj

advmod dobj

punct

– vnom (verb nominal): This is used for the relationship between a verb mon-
inal and a classifier noun. The classifier noun is always before the verb.
Example: “cái”, “sự”, “việc”, . . .
• Cái ăn khan hiếm quá! → vnom(ăn, cái)

Cái ăn khan_hiếm quá !
1 2 3 4 5

root

vnom nsubj advmod

punct

Then, we have a comparison between the two sets of labels under Table 2.

2.2 BiLSTM in dependency parsing

Using BiLSTM feature representation Instead of using direct feature vec-
tors in dependency parsing, we use the same method in [3]. Each of feature
vectors by its BiLSTM encoding, and uses a concatenation of a minimal set of
such BiLSTM encodings as a feature function, which is then passed to a non-
linear scoring function (multi-layer perceptron).

Give input sentence s with n words: w1, ..., wn and the corresponding POS
tags p1, ..., pn. Each word wi and POS pi with embedding vectors e(wi) and e(pi)
and denote x1:n is a sequence of input vectors with:

xi = e(wi) ◦ e(pi)

The embedding are trained together with the model. We alse denoted vi is the
output of this model. vi is computed as follows:

Table 2. Comparison between Vietnamese dependencies (VD) and Universal depen-
dencies (UD)

VD (2016) UD (2015) Meaning

csubj csubj Clausal subject
csubj:asubj
csubj:vsubj
acomp xcomp Adjectival complement
amod amod Adjectival modier
apredmod advmod Adjectival modier of a predicate
advmod advmod Adverbial modier
advcl advcl Adverbial clause modier
aux aux Auxiliary
auxpass auxpass Passive auxiliary
appos appos Appositional modier
cc cc Coordination
ccomp ccomp Clausal complement
conj conj Conjunct
cop cop Copula
dep dep Dependent
det det Determiner
discourse discourse Discourse element
dislocated dislocated Dislocated elements
dobj dobj Direct object
foreign foreign Foreign words
iobj iobj Indirect object
list list List
mark mark Marker
neg neg Negation modier
nn compound Noun compound modier
nsubj nsubj Nominal subject
num nummod Numeric modier
number compound Element of compound number
parataxis parataxis Parataxis
pcomp mark Prepositional complement
pobj case Object of a preposition
prep nmod Prepositional modier
punct punct Punctuation
remnant remnant Remnant in ellipsis
reparandum reparandum Overridden disfluency
rcmod acl:relcl Relative clause modier
ref ref Referent
root root root
tmod nmod:tmod Temporal modier
vcomp ccomp Verb complement of a verb
vmod amod:vmod Verb modier of an NP
vocative vocative Vocative
xcomp xcomp Open clausal complement
nsubjpass nsubjpass Passive nominal subject
csubjpass csubjpass Clausal passive subject

- expl Expletive
- goeswith Goes with

nc - Classifier noun
vnom - Verb nominal

vi = BiLSTM(x1:n, i)

A Bidirectional LSTM composed of two LSTMs: LSTMf and LSTMb. The
LSTMf reads the sequence in its regular order and the LSTMb reads it in
reverse. Concretely, given a sequence of vectors x1:n and index i, the function
BiLSTMθ(x1:n, i) is defined as:

BiLSTMθ(x1:n, i) = LSTMf (x1:i) ◦ LSTMb(xn:i)
vi = BiLSTMθ(x1:n, i)

The feature function φ is then the concatenation of a small number of BiLSTM
vectors. The resulting feature vectors are then scored using a non-linear function,
namely a multi-layer perceptron with one hidden layer (MLP):

MLPθ(x) =W 2. tanh(W 1.x+ b1) + b2

where θ =W 2,W 1, b2, b1 are the model parameters.

Transition-Based dependency parsing uses BiLSTM feature repre-
sentation Given a sentence s, the transition-based parser is initialized with
configuration c. Then, a feature function φ(c) represents the configuration c
as a vector. The feature function is the concatenated BiLSTM vectors of the
some items on the stack and the buffer. For example, for a configuration c =
(...|s2|s1|s0, b0|..., T) the feature extractor is the top 3 items on the stack and
the first item on the buffer. It is defined as:

φ(c) = vs2 ◦ vs1 ◦ vs0 ◦ vb0
vi = BiLSTM(x1:n, i)

Each transition is scoring using an MLP that is fed the BiLSTM encodings of
vectors that are gotten from the feature extractor. Each xi is concatenation of a
word and a POS vector. SCORE assigning scores to (configuration, transition)
pairs. SCORE scores the possible transition t = Shift, Left_Arc,Right_Arc,
and the highest scoring transition t̂ is chosen. The transition t̂ is applied to the
configuration that will output a new configuration.

Graph-based dependency parsing uses BiLSTM feature representation
In graph-based parsing, the weights of the edges are calculated for building
dependency graphs of s = x1:n a sentence as follows:

predict(s) = [argmaxy∈Y (s)scoreglobal(s, y)]
scoreglobal(s, y) =

∑
part∈y scorelocal(s, part)

where space Y (s) of valid dependency trees over s.
Arc-factored parsing decomposes the score of a tree to the sum of the score of
its head-modifier arcs (h,m):

parse(s) = [argmaxy∈Y (s)

∑
(h,m)∈y score(φ(s, h,m))]

where φ(s, h,m) is the feature extractor which uses the BiLSTM encoding of the
head word and the modifier word: φ(s, h,m) = BiLSTM(x1:n, h)◦BiLSTM(x1:n,m)
The final model is:

parse(s) = argmaxy∈Y (s)

∑
(h,m)∈y

score(φ(s, h,m))

= argmaxy∈Y (s)

∑
(h,m)∈y

MLP (vh ◦ vm)

vi = BiLSTM(x1:n, i)

3 Experiments

3.1 Datasets

We use the similar database in our research [7], [9], [10].
Text corpus for distributed word representations: To create distributed word

representations, we use the dataset consisting of 7.3GB of text from 2 million
articles collected via the Vietnamese news portal. The text is first normalized
to lower case. All special characters are removed except these common symbols:
the comma, the semi-colon, the colon, the full stop and the percentage sign.
All numeral sequences are replaced with the special token <number>, so those
correlations between a certain word and a number are correctly recognized by
the neural network or the log-bilinear regression model.

Each word in the Vietnamese language may consist of more than one syllable
with spaces in between, which could be regarded as multiple words by the un-
supervised models. Hence it is necessary to replace the spaces within each word
with underscores to create full word tokens. The tokenization process follows the
method described in [18]. After removal of special characters and tokenization,
the articles add up to 969 million word tokens, spanning a vocabulary of 1.5 mil-
lion unique tokens. We train the unsupervised models with the full vocabulary
to obtain the representation vectors, and then prune the collection of word vec-
tors to the 5.000 most frequent words, excluding special symbols and the token
<number> representing numeral sequences.

Dependency treebank. We conduct our experiments on the Vietnamese de-
pendency treebank dataset. This treebank is derived automatically from the
constituency-based annotation of the VTB [7], containing 10.471 sentences (225.085
tokens). We manually check the correctness of the conversion on a subset of the
converted corpus to come up 3.000 of universal dependency with a training set
of 2.200 sentences, a test set of 400 sentences and a dev set of 400 sentences.

3.2 Feature sets

Feature sets in transition-based : For each parser configuration c = (...|s2|s1|s0, b0|..., T)
and transition f(c) in the gold parse. φ(c) is the feature vector representation if
the parser configuration c. We denoted part-of-speech tags of token w is p(w).

We use the notation tk(w) and e(w) to denote the extracting the word and
the distributed representation of the word of token w. rm(w) and lm(w) cor-
responding to the right-most and left-most modifier of token w. We used the
feature templates for the classifier in table 3. Each feature vtk(w) = p(w)◦ tk(w)
or ve = p(w) ◦ e(w) is a feature template of token w.

Table 3. Feature sets for use in the transition classifier

Feature set Feature templates

φ0 vtk(s0), vtk(s1), vtk(s2), vtk(b0)
φ1 ve(s0), ve(s1), ve(s2), ve(b0)
φ2 φ0, vtk(rm(s0)), vtk(lm(s0)), vtk(rm(s1)),

vtk(lm(s1)), vtk(rm(s2)), vtk(lm(s2)), vtk(lm(b0))
φ3 φ1, ve(rm(s0)), ve(lm(s0)), ve(rm(s1)), ve(lm(s1)),

ve(rm(s2)), ve(lm(s2)), ve(lm(b0))

Feature sets in graph-based : The feature-set proposed by McDonald et al.
(2005) with 18 templates for a first-order parser, while the first order feature
extractor in the actual implementation’s code (MSTParser2) includes roughly a
hundred feature templates. In this case, feature extractor uses merely encoding
of the headword and the modifier word with pos and word.

3.3 Vietnamese dependency parsing based-on bist-parser

The Bist-parser is a tool, using BiLSTM feature extractors with graph-based and
transition-based dependency parsers. This tool was developed by Kiperwasser et
al., using BiLSTM feature extractors in Section 2.2.

We use two attachment scores, labeled attachment score (LAS) and un-
labelled attachment score (UAS) to evaluate the accuracy of the dependency
parsing system. Attachment scores are defined as the percentage of correct de-
pendency relations recovered by the parser. A dependency relation is considered
correct if both the source word and the target word are correct (UAS), plus the
dependency type is correct (LAS).

We also estimate on the Vietnamese dependency treebank [7]. The result is
the highest accuracy in Vienamese dependency parsing as presenting in table 5.

4 Conclusion

In this paper, we presented in detail to contribute Vietnamese universal depen-
dency. We also use this data in the Bist-parser system which is based on bidirec-
tional LSTMs for dependency parser. We evaluated the accuracy of the system
2 http://www.seas.upenn.edu/ strctlrn/MSTParser/MSTParser.html

Table 4. Accuracy of Bist-parser with feature sets on the Vietnamese universal de-
pendency treebank

Feature set System Test
USA LSA

φ2 Transition-based 76.86% 72.38%
Graph-based 77.79% 74.08%

φ3 Transition-based 75.75% 71.13%
Graph-based 78.17% 74.84%

Phuong et al. [9] Transition-based 73.21% 63.06%
Luong et al. [10] Graph-based 73.09% 68.32%

Table 5. Accuracy of Bist-parser with feature sets on Vietnamese dependency treebank
[7]

Feature set System Test
USA LSA

φ2 Transition-based 82.77% 76.02%
Graph-based 84.05% 78.35%

φ3 Transition-based 83.17% 76.70%
Graph-based 84.45% 78.56%

Luong et al. [7] Transition-based 73.03% 66.35%

Some results on the other dependency banks in Vietnamese

Kiem-Hieu [12] Graph-based 84.4% 81.4%
Dat Quoc et al. [8] Graph-based (MSTParser) 79.08% 71.66%
Dat Quoc et al. [11] Graph-based (Neural network) 80.66% 73.53%

for Vietnamese parsing in two cases: with or without using the distributed word
representations feature in the Bist-parser system. The accuracy of our system is
UAS=78.17% and LAS= 74.84% when we use gloVe model for producing dis-
tributed word representations on Vietnamese universal dependency. This result
is the highest accuracy in comparison with the previous researches. It increases
about 5.0%, with details increasing from 73.21% to 78.17% and from 68.32% to
74.84% for USA and LSA respectively. This system gets state of the art perfor-
mance on Viettreebank [7] with UAS=84.45% and LAS= 78.56%.

In the future, we will integrate the CRF into this system. We also conduct
another approach to apply this model to a constituency-based structure in Viet-
namese.

References

1. Chen, D., Manning, C.D.: A fast and accurate dependency parser using neural
networks. In Moschitti, A., Pang, B., Daelemans, W., eds.: EMNLP, ACL (2014)
740–750

2. Dyer, C., Ballesteros, M., Ling, W., Matthews, A., Smith, N.A.: Transition-based
dependency parsing with stack long short-term memory. CoRR abs/1505.08075
(2015)

3. Kiperwasser, E., Goldberg, Y.: Simple and accurate dependency parsing using
bidirectional lstm feature representations. CoRR abs/1603.04351 (2016)

4. Dozat, T., Manning, C.D.: Deep biaffine attention for neural dependency parsing.
CoRR abs/1611.01734 (2016)

5. Minh, N.L., Điệp, H.T., Kế, T.M.: Nghiên cứu luật hiệu chỉnh kết quả dùng phương
pháp MST phân tích cú pháp phụ thuộc tiếng việt. In: ICT-rda 8, Hanoi, Vietnam
(2008) 258–267

6. Le-Hong, P., Nguyen, T.M.H., Azim, R.: Vietnamese parsing with an automati-
cally extracted tree-adjoining grammar. In: Proceedings of the IEEE International
Conference in Computer Science: Research, Innovation and Vision of the Future,
RIVF, HCMC, Vietnam (2012)

7. T.L., N., M.L., H., V.H., N., T.M.H., N., P, L.H.: Building a treebank for viet-
namese dependency parsing. In: International Conference on Computing and Com-
munication Technologies, Research, Innovation, and Vision for the Future, RIVF
2013, Hanoi, Vietnam, November 10-13, 2013, IEEE (2013) 147–151

8. Nguyen, D.Q., Nguyen, D.Q., Pham, S.B., Nguyen, P.T., Nguyen, M.L.: From
Treebank Conversion to Automatic Dependency Parsing for Vietnamese. In: Pro-
ceedings of 19th International Conference on Application of Natural Language to
Information Systems. (2014) 196–207

9. Le-Hong, P., Nguyen, T.M.H., Nguyen, T.L., Ha, M.L. In: Fast Dependency Pars-
ing Using Distributed Word Representations. Springer International Publishing,
Cham (2015) 261–272

10. Nguyen, T.L., Ha, M.L., Le-Hong, P., Nguyen, T.M.H. In: Using distributed word
representations in graph-based dependency parsing for Vietnamese. (2016) 804–810

11. Nguyen, D.Q., Dras, M., Johnson, M.: An empirical study for vietnamese depen-
dency parsing. In: Proceedings of the Australasian Language Technology Associa-
tion Workshop 2016, Melbourne, Australia (2016) 143–149

12. Nguyen, K.H.: Bktreebank: Building a vietnamese dependency treebank. CoRR
abs/1710.05519 (2017)

13. Le-Hong, P., Nguyen, T.M.H., Nguyen, P.T., Roussanaly, A.: Automated extrac-
tion of tree adjoining grammars from a treebank for Vietnamese. In: Proceedings
of The Tenth International Workshop on Tree Adjoining Grammars and Related
Formalisms (TAG+10), Yale University, New Haven, CT, USA (2010)

14. McDonald, R.T., Nivre, J.: Analyzing and integrating dependency parsers. Com-
putational Linguistics 37 (2011) 197–230

15. McDonald, R., Crammer, K., Pereira, F.: Online large-margin training of depen-
dency parsers. In: Proceedings of the 43rd Annual Meeting of the Association for
Computational Linguistics (ACL’05). (2005) 91–98

16. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9
(1997) 1735–1780

17. Marneffe, M.C.D., Dozat, T., Silveira, N., Haverinen, K., Ginter, F., Nivre, J.,
Manning, C.D.: Universal stanford dependencies: a cross-linguistic typology. In
Chair), N.C.C., Choukri, K., Declerck, T., Loftsson, H., Maegaard, B., Mariani, J.,
Moreno, A., Odijk, J., Piperidis, S., eds.: Proceedings of the Ninth International
Conference on Language Resources and Evaluation (LREC’14), Reykjavik, Iceland,
European Language Resources Association (ELRA) (2014)

18. Phuong, L.e., Thi Minh Huyen, N., Roussanaly, A., Vinh, H.T. In: A Hybrid
Approach to Word Segmentation of Vietnamese Texts. Springer Berlin Heidelberg,
Berlin, Heidelberg (2008) 240–249

