
A Formula Embedding Approach to Math
Information Retrieval

Amarnath Pathak1, Partha Pakray1 and Alexander Gelbukh2

Dept. of Computer Science & Engineering
National Institute of Technology, Mizoram1

Aizawl, India
Instituto Politécnico Nacional2

Mexico City, Mexico
{amar4gate,parthapakray}@gmail.com, gelbukh@gelbukh.com

Abstract. Intricate math formulae, which majorly constitute the con-
tent of scientific documents, add to the complexity of scientific document
retrieval. Although modifications in conventional indexing and search
mechanisms have eased the complexity and exhibited notable perfor-
mance, the formula embedding approach to scientific document retrieval
sounds equally appealing and promising. Formula Embedding Module of
our proposed system uses a Bit Position Information Table to transform
math formulae, contained inside scientific documents, into binary for-
mulae vectors. Each set bit of a formula vector designates presence of a
specific mathematical entity. Mathematical user query is transformed
into query vector, in similar fashion, and the corresponding relevant
documents are retrieved. Relevance of a search result is characterized
by extent of similarity between indexed formula vector and the query
vector. Promising performance, under moderately constrained situation,
substantiates competence of our proposed approach.

Keywords: Math Information Retrieval, Formula Embedding, Math
Formula Search, Scientific Document retrieval, Precision

1 Introduction

Information Retrieval, an application area of Natural Language Processing, in-
tends to content information needs of end users. Information needs vary from
individual to individual which eventually poses challenge to design of search
engines. Though the conventional search engines come equipped with text and
multimedia content searching abilities, they often lack interface and requisite
abilities to search math formulae present in scientific documents.

Effective retrieval of scientific documents is challenged by abundance and
complexity of math formulae contained therein. Presence of these formulae sig-
nificantly demarcates scientific documents from normal text documents and
mandates modification in conventional retrieval mechanisms to ease their re-
trieval. Intelligence of scientific documents search engine (henceforth called as

2 Amarnath Pathak, Partha Pakray and Alexander Gelbukh

math search engine) is manifested in its ability to comprehend crux of math
formula query prior to searching. Relevant search results should be substantially
influenced and guided by semantics of query formula rather than its syntactic
exactness. For example, given query formula to be 1

1+ex , usually, the end user

will be equally content with search results containing 1
1+ep , 1

1+ax , 1
1+ap , 1 + ex,

1
1+e−x ex, ap and the list goes on. Thus, the preciseness of numbers, variables
and syntactic constructs of query formula are often compromised for the sake of
semantic equivalence or sub-formulae results. In a nutshell, in context of math
formula search, relevance of search results encompasses a wide range of mean-
ings which contrasts with the usual text query search wherein the relevance
designates exactness and optimal match.

Distinctive stipulations, laid out by math formula search, necessitate revamp-
ing conventional techniques to successfully meet the expectations of end users of
math search engine. To this end, document indexing and formulae search tech-
niques have been subjected to numerous modifications which exhibit promising
performance under normal as well as eccentric situations. In particular, index-
ing of canonicalized, tokenized and structurally unified variants of raw formulae
have been found to engender relevant search results [15, 12, 13]. Canonicalization
tackles representational non-uniformity of math formulae whereby equivalent
formulae, with minor representational difference, are homogenized. In addition,
tokenization and structural unification help retrieve sub-formulae and similar
formulae, respectively. Weights assigned to tokenized and structurally unified
formulae characterize extent of their similarity with original formulae which
eventually help in ranking retrieved documents. Although the approach splen-
didly caters to the need of math information seekers, it can be fascinating to
prospect other competent techniques which may depict similar traits with rela-
tively lesser effort. Our proposed approach gets driven by this little motivation.

In this paper, we describe our formulae embedding approach to math infor-
mation retrieval and a comprehensive analysis of obtained system results to infer
strengths and weaknesses of proposed approach. Formulae embedding envisions
math formulae of documents and the mathematical user query as binary vectors
wherein each bit position designates absence or presence of a specific mathe-
matical entity, such as single character variable, superscript, subscript, fraction,
special symbol, and so on. After having preprocessed the scientific documents
and the math formulae contained therein, each formula is transformed to a fairly
large-sized vector which encompasses nearly all the information content of corre-
sponding formula. Eventually, the multitude of formula vector to corresponding
document mapping are indexed to assist the searcher module in its hunt for
relevant documents. Count of matching set bits (set bits at same positions) of
indexed formula vector and query vector constitutes the crucial criterion for
assessing relevance of retrieved documents. Although there exist some pitfalls
associated with proposed approach, it predominantly lives up to expectations of
end users as a baseline approach.

Efficacy of proposed approach has been tested using a corpus comprising
of 212 documents of NII Testbeds and Community for Information Access Re-

A Formula Embedding Approach to Math Information Retrieval 3

search (NTCIR)-12 MathIR task1 and a queryset comprising of 19 Wikipedia
Main Task queries and 4 Wikipedia Browsing Task queries. Well known trec -
eval2 tool has been employed to evaluate system’s effectiveness on the grounds of
Precision at 5 (P 5), Precision at 10 (P 10), mean average precision (map) and
binary preference-based measure (bpref) measures. The tool compares system
results against a Gold Dataset embodying judged entries for each query of the
queryset. Considerably high values of evaluation measures serve as testament to
the distinguished abilities of the proposed approach. Furthermore, the system
results have been also compared with the results furnished by a conventional text
search engine, using the same experimental framework. Vast gaps in the corre-
sponding evaluation measures of the two systems are indicative of the conceptual
difference between conventional text search and the math formulae search.

Rest of the paper is organized as follows: Section 2 describes some closely
related works; Section 3 details system architecture and its working description;
Section 4 discusses experimental framework using which system’s effectiveness
has been tested; Section 5 details system results and their comprehensive analy-
sis; Section 6 points direction for future research; Section 7 concludes the paper.

2 Related Works

Information rich contents of scientific documents serve as crucial input to many
scientific and technical research. However, scientific documents being primarily
rich in math formulae, conventional text oriented indexing and search techniques
often fail to retrieve information from such documents.

Although a number of past works have addressed the issue of information
retrieval from scientific documents, the formulae embedding approach, in par-
ticular, is still in its infancy. A relevant work in this regard is the document
retrieval system [16] of NTCIR-12 MathIR task which uses Document To Vector
(Doc2Vec) and Latent Dirichlet Allocation (LDA) for retrieving similar formu-
lae and sub-formulae. In particular, the Distributed Bag of Words (PV-DBOW)
model, a special variant of Doc2Vec algorithm, has been exploited and extended
to represent math expressions in terms of real valued vectors. Furthermore, the
preliminary exploration of formulae embedding has shown promising results in
context of math information retrieval [4]. Initially a symbol2vec method trans-
forms formulae symbols into vector representation and the cosine distance of
symbol vectors of closely related symbols turn out to be minimum. Symbol vec-
tors and Distributed Memory Model of Paragraph Vectors (PV-DM) are then
used to embed formulae. Well known cosine similarity measure computes sim-
ilarity of formulae vectors and assigns suitable score. However, the insufficient
system description and analysis of results barely convey strengths and weak-
nesses of the approach.

The necessity of math formulae search led to the introduction of a new math
pilot task in NTCIR-10 conference [1, 6] and the task has continued to be part of

1 http://ntcir-math.nii.ac.jp/
2 http://trec.nist.gov/trec eval/

4 Amarnath Pathak, Partha Pakray and Alexander Gelbukh

subsequent NTCIR conferences, namely NTCIR-11 [2, 5] and NTCIR-12 [17, 7].
A Math Indexer and Searcher System (MIaS) of NTCIR-10 conference employs
preprocessing of scientific documents followed by canonicalization and lineariza-
tion of mathematical expressions to ease their retrieval [8]. An enhanced version
of MIaS [12] uses better preprocessing, canonicalization, math representation
and query expansion strategies which eventually helped it emerge as the winner
system of NTCIR-11. Furthermore, combining text keywords with math query
using different querying strategies has furthered the effectiveness of retrieval [9].
MIaS at NTCIR-12 conference was characterized by an additional structural
unification component which helped retrieve semantically similar formulae [13].
Tangent-3 math retrieval system [3], at NTCIR-12, uses inverted indexing to
store mathematical entities extracted from Symbol Layout Tree (SLT). This is
followed by a 2 stage retrieval process. While the first stage primarily concerns
retrieval of relevant expressions using iterator trees and trivial ranking, the sec-
ond stage concerns strict re-ranking of top-k best candidates.

Modifications in conventional indexing techniques have also contributed no-
tably to the domain of math formulae search. In particular, substitution tree
based indexing techniques [14, 11] index math formulae along nodes and leaves
of a substitution tree and minimize the memory requirement. Nodes of the tree
correspond to substitutions whereas the leaves correspond to mathematical en-
tities. A depth first traversal of the tree yields an indexed formula.

An architecture for scientific document retrieval, containing 3 different Text-
Text, Text-Math and Math-Math entailment modules, has been proposed in [10].
Architecture supports search for user query embodying text as well as mathe-
matical contents. Text Entailment (TE) module matches text part of the query
to the indexed text contents, Math Entailment (ME) module matches mathe-
matical part of query to the indexed math formulae and Text Math Entailment
(TME) module matches text part of the query to the standard names of indexed
math formulae.

3 System Description

This section provides detailed description of corpus used in our experimentation
and the crucial components of system architecture which sequentially function to
output top ranked indexed documents, corresponding to each user query. Figure
1 shows the system architecture and workflow of proposed system.

3.1 Corpus Description

Proposed system has been experimented with a corpus comprising of 212 doc-
uments chosen from vast arXiv and Wikipedia corpora of NTCIR-12 MathIR
task. Total size of the corpus is 22.6 MB with majority of documents being for-
mulae rich and considerably large in size. The documents are in XHTML format
with formulae written using MathML.

A Formula Embedding Approach to Math Information Retrieval 5

Fig. 1. System Architecture and Working Description

A) arXiv corpus
arXiv corpus of NTCIR-12 MathIR task comprises of 105,120 scientific doc-
uments chosen from the following arXiv categories: math, cs, physics:math-
ph, stat, physics:hep-th and physics:nlin [17]. Documents contain roughly 60
million math formulae written using MathML. arXiv corpus is intended for
technical users.

B) Wikipedia corpus
Wikipedia corpus of NTCIR-12 MathIR task comprises of 319,689 articles in
XHTML format which contain 590,000 formulae encoded using LATEX, Pre-
sentation MathML and Content MathML. Unlike arXiv corpus, Wikipedia
corpus is intended for non-technical users.

While selecting the documents for experimentation, adequate care has been
taken to ensure that:

1. a reasonable proportion of documents are common to different queries of the
query set.

2. some documents contain exact formula query whereas some contain similar
formulae, sub-formulae and parent formulae.

6 Amarnath Pathak, Partha Pakray and Alexander Gelbukh

Table 1 summarizes our corpus information.

Table 1. Corpus Description

Size of Corpus Number of
Documents

Source of
Documents

Format of
Documents

Encoding of
Documents

22.6 MB 212 arXiv & Wikipedia
corpora of NTCIR-
12 MathIR task

XHTML Presentation &
Content MathML

3.2 Document Preprocessor

Core focus of our proposed approach being formulae retrieval and formulae
matching, document preprocessor extracts only MathML formulae from the
documents containing text as well as math contents. Figure 2 shows a sample
XHTML document containing text as well as math contents. Figure 3(a) shows
output of document preprocessor wherein text contents have been removed.

Fig. 2. A sample XHTML document containing text as well as math formulae

A Formula Embedding Approach to Math Information Retrieval 7

Fig. 3. (a) Output of Document Preprocessor (b) Output of Formula Preprocessor

3.3 Formula Preprocessor

Primary job of formula preprocessor is to filter out unnecessary MathML el-
ements and attributes which barely contribute to information content of the
formula. Table 2 shows some examples of preprocessing done by formula pre-
processor. Figure 3(b) shows a complete output of formula preprocessor wherein
only relevant and requisite information of the raw formula have been preserved.

3.4 Formula Embedding Module

Formula embedding module takes processed formula as input and outputs a cor-
responding binary vector. Careful observation of Presentation MathML formulae
guides us to the fact that 〈mi〉 and 〈mo〉 elements form the key constituents of
nearly all formulae. Thus, the module parses processed MathML formula to fetch
contents from all occurrences of 〈mi〉 and 〈mo〉 elements. Besides, the module
also accounts for all other MathML elements, such as 〈msqrt〉, 〈msub〉, 〈msup〉,
and so on, present in the formula. Eventually, the module uses information of
fetched contents and the bit position information table to set respective bits of
corresponding formula vector which has a fixed length of 150 bits. A bit posi-
tion information table, see Table 3, depicts bit positions assigned to different
mathematical entities. A vector of length 150 suffices to encode mathematical

8 Amarnath Pathak, Partha Pakray and Alexander Gelbukh

Table 2. Preprocessing done by Formula Preprocessor

Original Processed

〈mi xref =“p7.1.m1.1.1.cmml” id=“p7.1.m1.1.1”〉 〈mi〉
〈mo xref =“p7.1.m1.1.2.cmml” id=“p7.1.m1.1.2”〉 〈mo〉

〈math xmlns=“http://www.w3.org/1998/Math/MathML”〉 〈math〉
〈semantics xref =“p7.1.m1.1.1.cmml” id=“p7.1.m1.1.1”〉 〈semantics〉

〈annotation-xml〉...〈/annotation-xml〉 Contents between
the two elements are
removed

〈annotation〉...〈/annotation〉 Contents between
the two elements are
removed

contents of all the documents in our corpus. However, module offers flexibility to
vary (increase or decrease) length of formula vector, if required. Figure 4 shows
typeset representation and formula vector of a processed MathML formula.

Fig. 4. Typeset Representation and Formula Vector of a processed MathML formula

The following points are worth noticing about bit position information table
and formula vector:

1. Bit positions 0–25, 57–65 and 71–100 correspond to content of 〈mi〉 tag,
bit positions 26–45, 66–70 and 101–149 refer to contents of 〈mo〉 tag and bit

A Formula Embedding Approach to Math Information Retrieval 9

positions 46–56 refer to essential MathML tags which contribute to semantics
of formula.

2. The list of symbols is by no means exhaustive but it accounts for nearly all
the symbols contained in our corpus. In future version of proposed system
the length of formula vector will be extended to accommodate new math
symbols.

3. In order to retrieve specific results ahead of non-specific ones, we have main-
tained distinction between single alphabet variables by assigning them dif-
ferent bit positions, ranging from 0–25. However, we make no distinction
between cases of variables and the different cases of same variable are as-
signed same bit position. For example, ‘a’ and ‘A’ are assigned same bit
position equal to 0. Furthermore, since the entities “exp” and ‘e’ are inter-
changeably used, they have been assigned same bit position equal to 4. For
the same reason, “log” and “ln” have been assigned same bit position.

4. Proposed system seeks generalized results for query term involving trigono-
metric ratios, such as sin, cos, tan, cot, and so on. Thus, all such ratios have
been assigned same bit position equal to 90.

5. An entity which can be part of 〈mi〉 as well as 〈mo〉 tags, i.e. one which
can act as variable as well as operator, has been assigned two distinct bit
positions. One such entity is Σ which has been assigned bit positions 76 and
112 designating variable and operator, respectively.

6. Bit position 65 designates a multi character variable whose name is not a
standard variable name such as, lim, log, gcd, and so on.

7. Formula vector does not account for multiple occurrences of the entities.
Even though an entity occurs more than once in the formula, only one corre-
sponding bit of formula vector is set. This limitation, however, causes inabil-
ity to retrieve relevant and precise results if the user query contains repetition
of an entity.

However, none of the above constraints incurs loss of generality and the ap-
proach is scalable. Scalability can be ensured through improvement in search
and indexing technique

3.5 Indexer

Indexer stores formula vector to corresponding document mapping in an index.
System indexes a total of 5,969 processed formulae, derived from 212 documents
of the corpus. Moreover, the index size is 1 MB which is 4.42% of the corpus
size. Corpus size and the size of formula vector are the primary factors which
affect size of the index. Indexer indexes formulae in document wise fashion,
which means that only after having indexed all the formulae of a document,
it goes for indexing next document of the corpus. However, it is observed that
‘0’ bits of a formula vector, which designate absence of mathematical entities,
unnecessarily increase the size of index. Our primary concern being presence of
an entity, future modification will refrain from storing ‘0’ bit information in the
index.

10 Amarnath Pathak, Partha Pakray and Alexander Gelbukh

Table 3. Bit Position Information Table

Entity Position Entity Position Entity Position Entity Position

a/A to z/Z 0-25 〈msqrt〉 56 log, ln 88 ± 120
exp 4 Z 57 ! 89

∫
121

= 26 N 58 Trigo. Ratios 90 ◦ 122
Product 27 Q 59 R 91 ′ 123

- 28 q 60 θ 92 ∧ 124
, 29 α 61 gcd 93 ∃ 125
+ 30 γ 62 xor 94 ¬ 126
∇ 31 ω 63 τ 95 lim 127
∂ 32 ϑ 64 η 96 <,〈 128
→ 33 Var. Name 65 σ 97 >, 〉 129
. 34 Null 66 Ω 98 ⊗ 130
(35 † 67 # 99 ` 131
) 36 : 68 p 100 u 132
≡ 37 dist 69 6= 101 t 133
� 38 ∓ 70 { 102 ‖ 134
∝ 39 φ, ϕ, Φ 71 } 103 ∪ 135
≈ 40 ~ 72 � 104 ∩ 136
/ 41 π 73 ≤ 105 7→ 137
⊆ 42 4 74 ∈ 106 ⊂ 138
⊕ 43 µ 75 [107 det 139
∼ 44 Σ 76] 108

∏
140

| 45 ∈ 77 ∗, x 109 mod 141
〈mfrac〉 46 ... 78 /∈ 110 sup 142
〈mn〉 47 δ 79 ˆ 111 ≥,>,& 143
〈msub〉 48 ψ, Ψ 80 Σ 112 dim 144
〈msup〉 49 Γ 81 ; 113 := 145
〈msubsup〉 50 ∞ 82 ¯ 114 ∼= 146
〈mover〉 51 ρ 83 ⇐⇒ , ⇔ 115 max 147

〈munderover〉 52 β 84 ⇒ 116 inf 148
〈munder〉 53 λ 85 d 117 min 149
〈mtable〉 54 ξ 86 e 118

〈mmultiscripts〉 55 2 87 ∀ 119

3.6 Query Preprocessor

The task of query preprocessor resembles that of document and formula prepro-
cessors. It extracts math formula from the user query (text+math) and processes
it to remove unnecessary MathML elements and attributes.

3.7 Query Embedding Module

The module transforms processed user query into a binary query vector in a way
similar to formula embedding module. An important observation is that some
NTCIR queries comprise of query variable (qvar) which may correspond to a
variable name, numeric value or complex expression. Without loss of generality,

A Formula Embedding Approach to Math Information Retrieval 11

the module assumes qvar to be numeric value and sets the bit position 47,
corresponding to element 〈mn〉, equal to 1 if qvar is encountered.

3.8 Searcher Module

Given a user query in vector form, primary objective of searcher module is to
retrieve relevant search results. Module uses number of matching set bits of query
vector and formula vector as the criterion to judge relevance of formula vector
and hence the search results. Although the criterion is not foolproof, it works
effectively well for majority of user queries. Probable errors and problems of
selected criterion have been comprehensively analyzed, with suitable examples,
in subsection 5.4. The module retrieves 30 most similar top ranked documents
corresponding to each user query. It should be noted that a query vector may
match different formulae of same document with different scores and if such a
document succeeds to find place in the result list, the module reports highest of
all the scores. In any case, the module refrains from reporting redundant results
which may hamper the evaluation process.

Eventually, the system results are fed to trec eval evaluation tool which com-
pares them with Gold dataset entries and outputs evaluation report which sum-
marizes effectiveness of system in terms of a number of parameters.

4 Experimental Design

This section details Queryset, Gold Dataset and Evaluation Parameters used to
inspect system’s robustness and efficiency.

4.1 Queryset Description

Our queryset comprises of 23 MathML queries derived from NTCIR-12 MathIR
Wikipedia Main Task and Wikipedia Formula Browsing Task querysets. The
queryset is a mix of simple and complex queries wherein each query is charac-
terized by a QueryID. While selecting documents for our corpus, it has been
ensured that the documents embody either exact form or similar form or sub-
formula form of query formulae in the queryset. Each of the queries in queryset
is transformed into a query vector by the query embedding module.

4.2 Gold Dataset

Gold Dataset (also known as qrel file) strictly adheres to the Text REtrieval
Conference (TREC) qrel format3 and comprises of a set of human assessed doc-
uments for each query in the queryset. Gold dataset has the format:

QueryID Iteration Document# Relevance

3 http://trec.nist.gov/data/qrels eng/

12 Amarnath Pathak, Partha Pakray and Alexander Gelbukh

where, QueryID designates specific query, Iteration is an irrelevant field usually
set to 0 and ignored by trec eval tool, Document# specifies document number of
the retrieved document and Relevance designates binary judgment (1 for relevant
and 0 for irrelevant). A document is judged relevant even if it contains small
content of the query formula. Our Gold Dataset comprises of 690 entries wherein
77 entries have been judged irrelevant. Figure 5 shows snapshot of Gold Dataset.

Fig. 5. Snapshot of Gold Dataset

4.3 Evaluation Parameters

System results have been evaluated on grounds of P 5, P 10, map and bpref.
All these measures are computed for each query and individual measures are
then averaged over all the queries in the queryset. P k, with k being equal to
5 and 10, refers to the count of relevant documents out of first k retrieved
documents. In order to compute map, precision score is computed whenever a
relevant document is retrieved. The precision scores are then averaged over all the
relevant documents, corresponding to a query, to get average precision. Average
precision scores are averaged over all the queries to get map. Furthermore, bpref
measures ability of system to retrieve relevant documents ahead of irrelevant

A Formula Embedding Approach to Math Information Retrieval 13

ones. Besides, we have also computed fraction of relevant documents which are
retrieved (denoted as frac ret). Number of relevant documents (num rel) divided
by number of retrieved relevant documents (num rel ret) gives the measure of
frac ret. Values of num rel and num rel ret, used to compute frac ret, can be
obtained from evaluation report. All the five parameters range from 0 to 1 with
larger values signifying better.

5 Results and Analysis

5.1 Format of Result Set

The Result Set, embodying system results, strictly adheres to result file format
of TREC. Each tuple of result set attains the form:

QueryID Iteration Document# Rank Similarity Run ID

Although Iteration (iter) and Rank fields are mandatory, the two are ignored by
evaluation tool. Similarity (sim) is usually float in nature and attains larger value
for documents which are retrieved first. In our case, count of matching set bits
refers to Similarity score. Run ID, a trivial field, is a string which characterizes
system run and gets printed on the evaluation report. Trivial fields, namely
Iteration, Rank and Run ID, have been set to dummy values “Q0”, “20” and
“demo”, respectively. Figure 6 shows snapshot of Result Set.

5.2 Evaluation Report

Evaluation report, generated by trec eval, contains values of a number of param-
eters which summarize effectiveness of proposed system. However, only 5 param-
eters, discussed in subsection 4.3, have been used to infer system’s effectiveness.
Labeled bar chart, shown in Figure 7, depicts values of evaluation parameters
for the proposed system. Fairly high values of the parameters substantiate effec-
tiveness of proposed approach. Out of a total of 613 relevant documents, system
succeeds in retrieving 535 documents which equates to 87.27% (frac ret=0.8727)
of the total relevant documents.

5.3 Comparison with Conventional Text Search Engine

The same experimental framework (Corpus, Gold Dataset and Query Set) has
been used to retrieve results from Apache Nutch4 based conventional text search
engine. Labeled bar chart, shown in Figure 8, depicts comparison of evaluation
parameters for the two systems. Significant differences in corresponding evalua-
tion measures are attributed to the fact that math search is way different than
conventional text search in terms of retrieval needs of end users and the way
query term is matched to indexed terms. In particular, incompetence of con-
ventional search engine is reflected in its ability to retrieve only 54 out of 613
relevant documents which equates to 8.81% (frac ret=0.0881) of total relevant
documents.
4 http://nutch.apache.org/

14 Amarnath Pathak, Partha Pakray and Alexander Gelbukh

Fig. 6. Snapshot of Result Set

Fig. 7. Bar graph showing values of evaluation parameters for the proposed system

5.4 Results Analysis

In this subsection, we have comprehensively analyzed strengths and possible lim-
itations of proposed method from different perspectives. Following observations
and system outcomes are worth considering:

A Formula Embedding Approach to Math Information Retrieval 15

Fig. 8. Bar graph showing comparison of proposed system and conventional text search
engine

1. First observation is that given a query formula, system flawlessly retrieves
all search results wherein the query term is either present in its exact form
or present as sub-formula of a larger parent formula. This actually happens
because similarity score (number of matching set bits of query vector and
the search result) for such results will be maximum. For example, Table 4
shows some of the search results for the user query a⊕ b. In first and second
search results, the query term appears in its exact form whereas in third
and fourth search results, it appears as sub-formula of its parent formula.
Moreover, the maximum similarity score is 3 as the query formula comprises
of three distinct entities, namely a, ⊕ and b.

Table 4. Search results for the user query a⊕ b

Search Results Documents Similarity Score

a⊕ b hep-th0005087 1 93 3
b⊕ a 1310.4652 1 21 3

a⊕ b = b 1209.1718 1 16 3
(a, b) ∈ A⊕B math0011063 1 119 3

M(B) = M(A)⊕M(A−1B) math0102078 1 5 3

WP
k = AP

k ⊕BP
k math0206213 1 24 3

2. Second observation is that even the complex formulae, which share semantic
relatedness with user query and contain all its entities, are successfully re-
trieved. For example, the fifth and sixth search results (see Table 4) neither
contain exact query formula nor its parent form but they are retrieved by

16 Amarnath Pathak, Partha Pakray and Alexander Gelbukh

our system as they semantically resemble the query formula and contain all
its entities.

3. Third observation is that the proposed system successfully retrieves sub-
formulae and similar formulae of a given user query. Consider, for example,
the search results for user query O(mn logm), shown in Table 5:

Table 5. Search results for the user query O(mn logm)

Search Results Documents Similarity Score

O(logn +k) 0805.1348 1 4 5

O(
√

logn) quant-ph0205083 1 82 5

O(n

1

log
p
m

) quant-ph0211179 1 57 5

O(logn) 0805.1348 1 32 5

O(nt logn) 1308.3898 1 18 5

Snippets, shown in first 4 search results, depict sub-formulae of the user
query. Also, the fifth search result is semantically similar to the user query.

4. Fourth observation is that although the decision of correlating relevance with
high similarity score predominantly works well and seems rational, it does
incur failure in certain cases. Consider, for example, the search results for
the user query 2F1(a, b; c; z), shown in Table 6:

Table 6. Search results for the user query 2F1(a, b; c; z)

Search Results Documents Similarity Score

2F1(a+ 1, 1; 2; z) math-ph0203052 1 8 10

2F1(k + 1, k + 1; 1;λ) quant-ph0212072 1 20 7

2F1(−n, b; γ; y) math-ph0203052 1 21 7

h̃ = W̃−1dx2 + hAB(x, xC)dxAdxB hep-th0108170 1 12 7

The first three search results are exceedingly good but the last search result
is absolutely irrelevant. Such an irrelevant result succeeds in finding place
in the result list, essentially because it contains majority of query formula
entities, namely ‘A’, ‘B’, ‘C’, ‘,’, ‘(’, ‘)’and ‘1’.

5. Fifth observation is that for the user query F = ma, system retrieves an irrel-
evant search result, namely

∫m

a
F (x)dx embodying all the entities of query

formula, among top-ranked search results. An even painful truth is that
system fails to retrieve a commendable formula, namely F = bc, primarily
because of its low similarity score equal to 2 and the constraint laid on the
system to retrieve only top 30 documents. Although an increase in search re-
sult limit will undoubtedly retrieve such commendable formulae, intelligence

A Formula Embedding Approach to Math Information Retrieval 17

lies in system’s ability to retrieve such formulae among top-ranked docu-
ments, under the imposed constraint. Moreover, the intelligence will also be
manifested in ability of system to invalidate irrelevant search results which
embody query formula entities but posses little or no semantic relatedness
with the query.

Our fourth and fifth observations (pitfalls, so to speak) guide us to the fact
that using number of matching set bits of formula vector and query vector as
similarity measure criterion is not foolproof. A search result with low similarity
score might prove to be more competent and relevant than the one with better
score. Thus, even though the proposed system lives up to our expectations as
a baseline system, a future extension necessitates revision in similarity measure
criterion to overpower existing inabilities.

6 Future Directions

As the system is baseline, list of possible future directions is prolonged. Some
salient future directions are undermentioned:

1. Proposed system currently refrains from indexing and searching text con-
tents. Thus, augmenting baseline system with text indexing and searching
functionality can add to the evaluation measures and possibly invalidate
some of the irrelevant search results.

2. Formula and Query vectors need to be lengthened to accommodate new
symbols and possibilities. For example, some bit positions may account for
count of occurrences of an entity or co-occurrence of two or more entities
which will eventually let the searcher module prefer relevant results over
irrelevant ones.

3. Similarity measure criterion can be modified to assign weightage to certain
bit positions. Our observation says that it is an inherent tendency of end
users to often compromise the variable names but not the operators. For
example, given user query to be a ⊕ b, end user will be more content with
c⊕d than a+ b, even though the similarity score for latter will be more than
the former. Thus, assigning more weightage to operator bit positions, while
computing similarity score, can do wonders.

4. Another fascinating idea could be to prompt the end users for key entities of
their queries. Search results, not adhering to such key entities, should not be
retrieved. This can be ensured by assigning more weightage to bit positions
of key entities, specified by end user, while computing the similarity score.

7 Conclusion

In this paper, we describe an unconventional formula embedding approach which
can ease retrieval of math formulae contained inside scientific documents. Un-
commonly used formula embedding approach opens door to new horizons and

18 Amarnath Pathak, Partha Pakray and Alexander Gelbukh

helps combat underlying challenges of scientific document retrieval. Having trans-
formed the processed document formulae and the user query into vectors of fixed
size, proposed system uses number of matching set bits of formula and query
vectors as similarity measure to retrieve indexed formulae and to judge their rel-
evance. Comprehensive appraisal of system results affirms underlying strengths
and weaknesses of proposed system. Although the approach has associated limi-
tations, it shows competence in retrieving exact query formula, parent formulae,
sub-formulae and similar formulae. Modifying similarity measure criterion and
incorporating support for indexing and searching of textual terms are some of
the notable future modifications which can further the effectiveness of retrieval.

Acknowledgement

The work presented here falls under the Research Project Grant No. YSS/2015/000988
and supported by the Department of Science & Technology (DST) and Science
and Engineering Research Board (SERB), Govt. of India. The authors would like
to acknowledge the Department of Computer Science & Engineering, National
Institute of Technology Mizoram, India for providing infrastructural facilities
and support.

References

1. Aizawa, A., Kohlhase, M., Ounis, I.: NTCIR-10 Math Pilot Task Overview. In:
Proceedings of the 10th NTCIR Conference. pp. 654–661. Tokyo, Japan (2013)

2. Aizawa, A., Kohlhase, M., Ounis, I., Schubotz, M.: NTCIR-11 Math-2 Task
Overview. In: Proceedings of the 11th NTCIR Conference. pp. 88–98. Tokyo, Japan
(2014)

3. Davila, K., Zanibbi, R., Kane, A., Tompa, F.W.: Tangent-3 at the NTCIR-12
MathIR Task. In: Proceedings of the 12th NTCIR Conference on Evaluation of
Information Access Technologies. pp. 338–345. Tokyo, Japan (2016)

4. Gao, L., Jiang, Z., Yin, Y., Yuan, K., Yan, Z., Tang, Z.: Preliminary Ex-
ploration of Formula Embedding for Mathematical Information Retrieval: Can
Mathematical Formulae Be Embedded Like A Natural Language? arXiv preprint
arXiv:1707.05154 (2017)

5. Joho, H., Kishida, K.: Overview of NTCIR-11. In: Proceedings of the 11th NTCIR
Conference. pp. 9–12. Tokyo, Japan (2014)

6. Joho, H., Sakai, T.: Overview of NTCIR-10. In: Proceedings of the 10th NTCIR
Conference. pp. 1–7. Tokyo, Japan (2014)

7. Kishida, K., Kato, M.P.: Overview of NTCIR-12. In: Proceedings of the 12th NT-
CIR Conference. pp. 1–7. Tokyo, Japan (2016)

8. Ĺı̌ska, M., Sojka, P., Ružicka, M.: Similarity Search for Mathematics: Masaryk
University team at the NTCIR-10 Math Task. In: Proceedings of the 10th NTCIR
Conference on Evaluation of Information Access Technologies. pp. 686–691. Tokyo,
Japan (2013)

9. Ĺı̌ska, M., Sojka, P., Ružicka, M.: Combining Text and Formula Queries in Math
Information Retrieval: Evaluation of Query Results Merging Strategies. In: Pro-
ceedings of the First International Workshop on Novel Web Search Interfaces and
Systems. pp. 7–9. ACM, Melbourne, Australia (2015)

A Formula Embedding Approach to Math Information Retrieval 19

10. Pakray, P., Sojka, P.: An Architecture for Scientific Document Retrieval Using
Textual and Math Entailment Modules. In: Proceedings of Recent Advances in
Slavonic Natural Language Processing. pp. 107–117. Karlova Studnka, Czech Re-
public (2014)

11. Pathak, A., Pakray, P., Sarkar, S., Das, D., Gelbukh, A.: MathIRs: Retrieval Sys-
tem for Scientific Documents. Computación y Sistemas 21(2), 253–265 (2017)

12. Ružicka, M., Sojka, P., Ĺı̌ska, M.: Math Indexer and Searcher under the Hood:
History and Development of a Winning Strategy. In: Proceedings of the 11th NT-
CIR Conference on Evaluation of Information Access Technologies. pp. 127–134.
Tokyo, Japan (2014)

13. Ruzicka, M., Sojka, P., Ĺıska, M.: Math Indexer and Searcher under the Hood:
Fine-tuning Query Expansion and Unification Strategies. In: Proceedings of the
12th NTCIR Conference on Evaluation of Information Access Technologies. pp.
331–337. Tokyo, Japan (2016)

14. Schellenberg, T., Yuan, B., Zanibbi, R.: Layout-Based Substitution Tree Indexing
and Retrieval for Mathematical Expressions. In: Proceedings of the Document
Recognition and Retrieval. pp. 1–8. California, USA (2012)

15. Sojka, P., Ĺı̌ska, M.: The Art of Mathematics Retrieval. In: Proceedings of the 11th
ACM symposium on Document engineering. pp. 57–60. California, USA (2011)

16. Thanda, A., Agarwal, A., Singla, K., Prakash, A., Gupta, A.: A Document Re-
trieval System for Math Queries. In: Proceedings of the 12th NTCIR Conference on
Evaluation of Information Access Technologies. pp. 346–353. Tokyo, Japan (2016)

17. Zanibbi, R., Aizawa, A., Kohlhase, M., Ounis, I., Topic, G., Davila, K.: NTCIR-
12 MathIR Task Overview. In: Proceedings of the 12th NTCIR Conference on
Evaluation of Information Access Technologies. pp. 299–308. Tokyo, Japan (2016)

