
Experiments on Deep Morphological Inflection

Akhilesh Sudhakar, Rajesh Kumar Mundotiya, and Anil Kumar Singh

IIT (BHU), Varanasi, India
http://iitbhu.ac.in

Abstract. Morphological inflection (MI) is the task of generating a tar-
get word form based on a source word and a set of target morphological
tags. We present different language-agnostic systems for MI and report
results on datasets of three different sizes: low, medium and high. All
these systems are deep neural network based. We implement and describe
a lower baseline, and show that our systems improve on this baseline, as
well as meet the state-of-art. One significant contribution through this
work is studying the different neural architectures that perform best on
different dataset sizes as well as on different languages. Another contri-
bution is exploring the use of phonological features of the language in
addition to characters, as well as pre-training of word embeddings. We
also implement a hybrid system which combines rules learnt from string
alignments along with deep learning. The significance of our work lies
in the fact that the systems presented can be used for any language (we
present results on 52 languages we experimented with) and in our analy-
sis of how linguistic properties of each language has a strong bearing on
the design of the neural architecture used for that language.

Keywords: Morphology, Deep Learning, Inflection

1 Introduction

Inflection is the process of transforming a root word (lemma) to a target word
form which has a specific set of grammatical features. Common grammatical
features include gender, number, tense, aspect etc. The ability to generate an
inflected word form from a given lemma (root) is highly beneficial in many NLP
tasks. It can be crucial in downstream tasks like topic modeling, machine trans-
lation and question answering. Most of these tasks suffer from data sparsity. This
is especially true in the case of morphologically rich languages. For instance, in
machine translation using parallel corpora, there is always scope for performance
improvement provided more words and sentences were available along with their
translations in the corpora. Statistically speaking, even then, commonly used
words and their inflected forms would repeat and dominate in the corpus. In
order to deal with the problem of data sparsity in these tasks, morphological
analysis and subsequent morphological inflection could be used. For each word,
the root could be extracted using a morphological analyzer. This root will then
be translated to the destination language. Morphological inflection will then be
applied on the root word (now in the destination language) to obtain the original



2 Akhilesh Sudhakar, Rajesh Kumar Mundotiya, and Anil Kumar Singh

word but in the destination language. In this way, the actually machine transla-
tion system would work on a far smaller subset of words, which consists of just
the root words, thereby reducing sparsity. Similarly, morphological inflection can
be used in other tasks too ([1], [2], [3]).

An inflected form of a word is generally obtained by the use of affixes (pre-
fixes, infixes, suffixes, simulfixes etc.) which attach morphemes to the beginning,
in the middle of or to the end of the root word. For instance, the word writing
is the present continuous inflected form of the lemma write.

We present language-agnostic deep neural systems for morphological inflec-
tion. All the neural networks in these systems condition the target inflected word
on the root word and the target features of the inflected word. The models use
sequence-to-sequence modeling of characters in the root word, and generate each
character of the target word using the sequence information of characters in the
root word as well as the target features. A single neural network uses all the
training examples for a language and learns a set of weights for all grammatical
features and their tags. This is done by using character-level encodings of root
words and binary vector encodings of tags. It is common knowledge that the
surface structure of a word and its morphological properties are highly related.
These neural systems are built using character-to-character sequence models in
order to exploit the surface structure of the root word. We also describe and
present a baseline system that does not make use of deep neural networks and
show improvements over this baseline.

The current work in an extension of our existing work, presented as part of
our participation in the SIGMORPHON shared task at CoNLL 2017 [4]. This
work is significantly different from our shared task submission in a number of
ways- we build a baseline model, present detailed analysis of hyper-parameter
selection, present our findings on using pre-trained vector embeddings, build a
hybrid model as well as show the incorporation of phonological features, all of
which have not been done in previous work.

There has been considerable debate about the use of deep learning in NLP
for low-resource languages. A lot of questions have been raised about the ability
of deep learning to work well with low-sized datasets. In order to test the per-
formance of our systems, we present deep learning models trained on datasets
of different-sizes (low, medium and high). Our models exceed the baselines on
all of these different sizes. However it is also obvious that reducing the size of
the training does negatively impact the performance of deep learning systems.
In order to overcome this shortcoming, we also present a hybrid model based
on extracting rules from string alignments, apart from our neural model. As the
size of training data reduces, we show that the hybrid model shows a growing
gain in accuracy over the stand alone neural model. Pre-training of word vectors
also shows considerable performance enhancements.



Morphological Inflection 3

2 Terminology Used

To maintain a consistent terminology, we use the term ‘root’ for the root word,
and ‘target’ for the inflected form of the root word. We use the term ‘feature’ to
represent grammatical properties of the inflected word, like, ‘category’, ‘gender’,
‘number’, ‘person’, ‘case’, ‘TAM’, ‘suffix’ etc. We use the term ‘tag’ to represent
each of the values taken by a feature for a particular word. For instance, ‘M
(male)’, ‘F (female)’ and ‘N (neuter)’ are possible tags for the feature ‘gender’.

3 Background

Prior to neural network based approaches to morphological inflection, most sys-
tems used a 3-step approach to solve the problem: 1) String alignment between
the lemma and the target (morphologically transformed form), 2) Rule extraction
from spans of the aligned strings and 3) Rule application to previously unseen
lemmas to transform them. [5] and [6, 7] used the above approaches, with each
of them using different string alignment algorithms and different models to ex-
tract rules from these alignment tables. However, in these kinds of systems, the
types of rules to be generated must be specified, which should also be engineered
to take into account language-specific transformational behavior. [8] proposed a
neural network based system which abstracts away the above steps by modeling
the problem as one of generating a character sequence, character-by-character.
Akin to machine translation systems, this system uses an encoder-decoder LSTM
model as proposed by [9]. This model takes into account the fact that the target
and the root word are similar, except for the parts that have been changed due
to inflection, by feeding the root word directly to the decoder as well. A sep-
arate neural net is trained for every language. The results reported by [8] are
state-of-art and we match state-of-art on many languages and exceed on some.

Apart from sharing some similarities with [8], our work is unique in many
ways. Firstly, the authors in [8] work on a smaller subset of languages and hence
report only a limited set of results. Secondly, we detail a hybrid approach to
supplement the deep model as well as propose different neural architectures for
different sizes of data and for different languages within a particular dataset
size too. This has been done taking into account the specific morpho-linguistic
properties of these languages. This naturally gives better performance than a
single model for all languages. On the other hand, they train a separate neural
network for each target feature, whereas we train a single model (specific to a
given language and dataset size) on each language. The advantage of doing so
is that the model needs lesser data to learn from, because this kind of a model
shares weights learned across all the features. This works well because word
inflection itself is inherently a mechanism in which the patterns of transformation
between a root and a target based on a particular feature’s tag’s contribution
are similar to those based on other features’ tags. Training on separate features
would not only make the model lose out on making use of this information but
would also require more training data to learn from, since sufficient examples



4 Akhilesh Sudhakar, Rajesh Kumar Mundotiya, and Anil Kumar Singh

need to be present emphasizing the contribution of each of the features. Our work
is also novel in presenting the correlation of a language’s linguistic properties
(based on their occurrence in the phylogenetic tree of languages and based on
their morphological complexity) along with the results obtained and the neural
architectures designed for each of them. To the best of our knowledge, this
is also the only work that additionally makes use of phonological features for
morphological inflection.

4 System Description

We present a baseline system as well as two systems for morphological inflection.
Each system is tested on all the three dataset sizes. The difference between these
two systems is that while the first uses the same neural architecture for all lan-
guages (for a particular size of dataset), the second system uses different neural
architectures for different languages in order to make best of language-specific
morphological information. We present the results of these two systems sepa-
rately for two reasons. Firstly, the first system can be used to make comparisons
across languages because it uses the same configurations for all languages. The
first system is more simplistic than the second and provides a higher baseline
than the baseline implemented using rule extractions. Secondly, the two systems
can be compared with the baseline as well as with each other in order to ob-
serve language-dependent variations in performance, which could be insightful
for further explorations.

4.1 Broad Basis for Neural Architecture

All the models are deep neural networks that take the root word and the target
tag set as inputs. They then generate the predicted target inflected word as
output. Broadly, these systems treat a word as a sequence of characters
and perform sequence-to-sequence treatment of characters in the root
word. This sequence modeling allows the model to capture information
about other characters in the context of a particular character. This
in turn, provides the model with information on how affixes must be
introduced into a root word to inflect it. Moreover, we also observe that
the only differences between the root and the target words are those characters
that have been added, substituted or deleted due to the inflections. The rest of
the characters remain the same in both. Concatenating the character embedding
vectors directly with the sequence vector generated by sequence modeling of the
characters helps the neural network to take advantage of this fact.

4.2 Common Aspects Across Models

In all the models in both the systems, certain structural and hyper-parametrical
features remain the same. The characters in the root word are represented us-
ing character indices, while the morphological features of the target word are



Morphological Inflection 5

represented using binary vectors. Each character index of the root word is then
embedded as a character embedding of dimension 64, to form the root word em-
bedding, i.e., the root word embedding is a 2-dimensional vector, with each row
corresponding to a character position in the word, and the columns of the row
corresponding to the embedding of that particular character. If an encoder is
used, it is bidirectional and the input word embeddings feed into it. The output
of the encoder (if any), concatenated with the root word embedding, feeds into
the decoder. All recurrent units have hidden layer dimensions of 256. Over the
decoder layer is a softmax layer that is used to predict the character that must
occur at each character position of the target word. In order to maintain a con-
stant word length, we use paddings of ‘0’ characters. All models use categorical
cross-entropy as the loss function and the Adam optimizer [10].

Dataset The models were trained on three differently-sized datasets. The low-
sized datasets had around 100 training samples, the medium-sized datasets had
around 1000 training samples and the high-sized datasets had around 10000
samples for most languages. Datasets were provided for a total of 52 languages.
Further details about this dataset, where it was obtained from, and the actual
data itself, can be found at the CoNLL-2017 website1.

Hyper-parameters In order to tune the hyper-parameters, we compute a cat-
egorical cross entropy error on a held-out validation set. As this tuning would
contaminate the validation set and lead to biased estimates, we hold out a sep-
arate test set to calculate the model’s performance. The reported values are
calculated on this test set. Our model has the following hyper-parameters:

1. Initial learning rate: We identify this hyper-parameter as the most influ-
ential in our model. By this, it is meant that small variations in the initial
learning rate led to appreciable changes in accuracies. Given that in our
choice of task (inflection), even accuracy changes in the magnitude of 1%
can be considered appreciable, we find that the initial learning rate has sub-
stantial significance. We use an adaptive learning rate schedule, as suggested
by [11]. After experimenting with multiple initial learning rates, we arrive
at an initial learning rate of 0.5.

2. Minibatch size: While we found that the effect of this hyper-parameter was
not so pronounced on accuracy, changes in this hyper-parameter reflected
upon the computational time taken during the training phase. Considering
that we used a GPU for our experiments, we set this size to 32 to take
advantage of matrix computational speedups. We also note that setting this
value to anything below 15 does not show any speedups.

3. Training epochs: While our final model uses early stopping to avoid over-
fitting, we observe that using early stopping masks the effect of the other
hyper-parameters. In order to study these more carefully, we initially let our

1 https://github.com/sigmorphon/conll2017



6 Akhilesh Sudhakar, Rajesh Kumar Mundotiya, and Anil Kumar Singh

model run all the 10,000 training epochs completely. However, as we have de-
scribed in the later section on ablation studies, we arrive at a patience value
of 10 epochs. Further elaborations have been done in the relevant section.

4. Momentum: We find that setting the momentum to 1 gives good results and
hence we did not experiment much with this hyper-parameter. This decision
was also guided by the intuition that our datasets are not very large and
that generally, mostly only unsupervised settings tend to make substantial
gains from choosing momentum values with care.

5. Hidden units: Dimensions of embedded layer and hidden layers of recurrent
units had to be arrived at. We did not observe a progressive trend in increases
these dimensions but did observe that the model did marginally better when
setting these values to powers of 2. We also note that increasing these above
the values chosen (64 for embedding layers and 256 for recurrent layers) did
not add to any performance improvements but neither did it degrade perfor-
mance. However, in the case where we pre-trained word vectors (described in
later sections), we observe that increasing the word embedding dimensions
to 300 gave better results. We believe that this might be because the word
vectors were trained on a Wikipedia dump corpus that naturally has more
information than the dataset, which just contains individual words. In order
to account for this excess information being passed (as compared to vectors
that weren’t pre-trained), the model perhaps requires more dimensions.

Fig. 1: C1, .., Cn represent char-
acters of the root word while
O1, .., On represent characters of
the output word

Fig. 2: C1, .., Cn represent char-
acters of the root word while
O1, .., On represent characters of
the output word



Morphological Inflection 7

Low-sized Dataset For training the model on the low-sized dataset, we did not
use any encoder and we used a simple LSTM with a single layer as the recurrent
unit (Figure 1).

Medium-sized Dataset For training the model on the medium-sized dataset,
we used a bidirectional LSTM as the encoder and a simple LSTM with a single
layer as the decoder (Figure 2).

Fig. 3: C1, .., Cn represent char-
acters of the root word while
O1, .., On represent characters of
the output word

Fig. 4: C1, .., Cn represent char-
acters of the root word while
O1, .., On represent characters of
the output word

High-sized Dataset For training the model on the high-sized dataset, we used
a bidirectional LSTM as the encoder and a simple LSTM with a single layer as
the decoder (Figure 2).

4.3 System 2

Low-sized Dataset For training the model on the low-sized dataset, we did
not use any encoder and, instead, we used a simple GRU, as reported by [12],
with a single layer as the recurrent unit (as shown in Figure 3).

Medium-sized Dataset For medium-sized dataset, we used different model
configurations for different languages. Four different kinds of configurations were
used:

1. Bidirectional LSTM as the encoder and a simple LSTM with a single layer
as the decoder (Figure 2)



8 Akhilesh Sudhakar, Rajesh Kumar Mundotiya, and Anil Kumar Singh

Fig. 5: C1, .., Cn represent char-
acters of the root word while
O1, .., On represent characters of
the output word

Fig. 6: C1, .., Cn represent char-
acters of the root word while
O1, .., On represent characters of
the output word

2. Bidirectional GRU as the encoder and a simple GRU with a single layer as
the decoder (Figure 4)

3. No encoder and a simple GRU with a single layer as the recurrent unit
(Figure 3)

4. Bidirectional GRU as the encoder and a deep GRU (two GRUs stacked one
above the other) as the decoder (Figure 5)

High-sized Dataset For training the model on the high-sized dataset, we used
a bidirectional GRU as the encoder and a deep GRU with 2 layers as the decoder
(Figure 6). Additionally, we use a 2 layer deep Convolutional Neural Network
(CNN) to convolve the input word and embeddings. Each convolutional layer
uses 64 convolutional filters, each having a width of 5.

4.4 Baseline System

In order to compare our method with a traditional string alignment based
method, we use a baseline model as suggested by [13]. However we have made cer-
tain modifications to the rule application phase of this baseline model, deviating
from the method suggested. This has been done in order to set a more relaxed
baseline for low-sized data, given that we are using deep learning techniques,
and also to reduce computation time. This model learns a set of rules for each
unique combination of target features. For instance, as an example suggested by
the authors of the above cited shared task paper, let us assume a training exam-
ple with root word ‘schielen’, target word ‘geschielt’ and has a target feature set



Morphological Inflection 9

’V.PTCP, PST’. The root and target word are aligned as (based on Levenshtein
distance):

schielen
geschielt

Next prefix, stem and suffix are extracted from this alignment as follows:
Prefix Stem Suffix

schiele n
ge schielt

Based on these pairings, two kinds of rules are extracted: prefix rules and suffix
rules. The prefix rule extracted here is to insert the characters ‘ge’ at the start
of the root word. The suffix rules extracted here are to replace the last letter
‘e’ in the stem of the root word, with the letter ‘t’, and to delete the suffix ‘n’,
of the root word. These 3 rules are now added to other such extracted rules
corresponding to the target feature set ’V.PTCP, PST’. Now if a previously
unseen test example with root word ’kaufen’ and target feature set ’V.PTCP,
PST’ is encountered, the model searches for a longest match between possible
suffixes of ‘kaufen’ (‘n’,‘en’,‘fen’, ...) and a root word suffix that exists in the saved
rules for the feature set ’V.PTCP, PST’. For instance, if this longest match is
’en’ and is part of the rule that replaces ‘en’ with ‘t’, then the predicted target
word for ‘kaufen’ is ‘kauft’.

5 System Enhancements

5.1 Word vectors and pre-training

Fig. 7: Incorporation of word vectors

It is not practical to assume that deep learning would give any decent results
on datasets of sizes 100 or 1000. Without pre-training, the word vectors are ini-
tialized randomly and the onus is completely on the model to train the word



10 Akhilesh Sudhakar, Rajesh Kumar Mundotiya, and Anil Kumar Singh

vectors. While such training of word vectors entirely in a task-specific manner is
known to give good results on supervised learning tasks, the model does a poor
job of determining appropriate embeddings with even moderately small datasets.
Our analysis shows that the currently obtained results for low and medium sized
datasets can be improved by a good margin if pre-trained word embeddings were
used. Due to time constraints, we were unable to perform pre-training of word
vectors on all the languages that we had datasets for. However, we ran ex-
periments with pre-trained vectors on the datasets for English. Depending on
model configurations, we obtained accuracy improvements between 8-10% for
low-sized datases, between 5-7% on medium-sized datasets, and between 0-2%
for high sized datasets. We used the model suggested in [14] for the same. One of
the main reasons for this performance boost is that the pre-trained word vectors
capture syntactic and morphological information from short neighbouring win-
dows. This also means that word vectors can directly capture analogical relations
to do with morphology. An example given in [14] is “dance is to dancing as fly
is to ?”. Since the task of morphological inflection is concerned with grammat-
ical constructs such as verb tenses, forms of adjectives etc., it is not surprising
that enhanced accuracy is observed using pre-training, as this enables the model
to draw analogies between training data and previously unseen data. The de-
crease in accuracy improvement with increase in dataset size is not surprising,
as a larger dataset would have already facilitated the generation of better task-
specific word embeddings by the model with lesser contribution from pre-trained
vectors. Further we also note that languages like Turkish, Czech, Finnish etc.
have a lot more to gain from pre-training as compared to English, since they are
much more inflectional morphologically complex than English. For instance, in
Archi, a single verb lemma can give rise to 1,502,839 distinct forms. The model
uses word vectors, incorporated by concatenation with the character vectors, as
shown in Figure 7.

Fig. 8: Hybrid model Fig. 9: Incorporation of phonological fea-
tures



Morphological Inflection 11

5.2 Hybrid models

As we have already been highlighted, deep learning as a standalone model is
inadequate to handle low-sized data scenarios. This issue becomes important to
address as one would ideally like to leverage the advantages that a deep learning
model has to offer even in the cases of low-resource languages. Pre-training
will only help these languages to some extent, as it too requires a large corpus
to learn embeddings from. We explored the use of a hybrid model (Figure 8)
in the case of low-sized and medium-sized datasets on the English dataset. As
mentioned earlier, the conceptual framework for morphological inflection consists
of 1) String alignment between lemma and target, 2) Rule extraction from spans
of these aligned strings and 3) Application of these rule to previously unseen
lemmas. The hybrid system employs traditional methods to address steps 1 and
2, and then feeds the outputs of these traditional methods as inputs to the deep
network. Specifically, we borrow from the work of [5] which learns morphological
paradigms, by comparing edit operations between the target and the lemma.
As an extension to this work, we propose extracting edit rules between the two
strings using string alignment algorithms proposed in [5], obtaining a set of
features from each lemma-target pair and concatenating the edit rules as well as
the features along with the original inputs to the deep net.

1. String alignment edits: Rules in this step consist of no-operation, insert,
delete and replace. For instance, if the lemma is ’write’ and the target is
’had written’, one possible set of rules extracted that would have led to each
character position of the target string would be as follows: i) insert(’h’) ii)
insert(’a’) iii) insert(’d’) iv) insert(’ ’) v) no-operation vi) no-operation vii)
no-operation viii) no-operation ix) insert(’t’) x) no-operation xi) insert(’n’)
Each of ’no-operation’, ’insert’, ’delete’ and ’replace’ are mapped to integers
0-3 respectively (rule types), and a specific rule is encoded as a 3-tuple ¡rule
type, lemma character, target character¿. The lemma character and target
character are the same for no-operations, the lemma character is an empty
character for insert, the target character is an empty character for delete
and the target and lemma characters are non-empty for replace rule types.

2. Word features: In addition to string alignment rules, we also input word
specific features for each character, to the neural network. These are as
follows: i) Bi-gram and tri-gram contexts of characters in both lemma and
target word ii) Distances of characters in the target word from beginning
and end of lemma iii) Distances of characters in lemma from beginning and
end of target word iv) Characters’ index in both lemma and target word
(i) and (iv) are especially necessary for low-size dataset configurations, which
cannot handle the complexity of an encoder-decoder layer. (ii) and (iv) are
required by both medium and low-sized datasets, as these deal with relative
with mutual character positions, which the neural network does not handle
on its own.

On the low-size dataset, incorporating string alignment rules and word features
gave an accuracy improvement of around 1.5% across different configurations. On



12 Akhilesh Sudhakar, Rajesh Kumar Mundotiya, and Anil Kumar Singh

the medium-sized dataset, the resulting accuracy improvement was around 0.85%
across different configurations. The model for the high-sized dataset did not show
any improvements. Figure 8 shows the architecture of this hybrid model.

5.3 Phonological features

It is well known that the phonology of a language interacts closely with its mor-
phology. We used this insight to use phonological or articulatory features as
additional inputs to the neural networks. These features are mainly the stan-
dard articulatory features such as type (vowel or consonant), place and manner
etc. We also use some orthographic features. The details of these features are
given in [15]. Each character has a set of 16 phonological features, each having
categorical values. The total number of categorical values across all 16 phono-
logical features is 57. The phonological features of each character were encoded
in a binary vector of dimension 57, with each position indicating a particular
¡feature,value¿ tuple. In order to explore the effect of incorporating character-
level phonological features, we ran 2 sets of ablations on the Hindi dataset. In
the first experiment, we replaced the characters with phonological features, i.e.,
each character of a word would be represented by a 57-length binary vector.
Doing this gave us an accuracy drop of around 3.4% on the low-sized dataset,
3.2% on the medium-sized dataset and 1.6% on the high-sized dataset. In our
second ablation, we concatenated the character-level phonological features along
with the character-level embeddings, before passing it to further layers. Doing
this improved accuracy on low-sized data by 2.35% and medium-sized data by
0.6% but did not have an effect on high-sized data. Figure 9 shows how the
phonological features have been incorporated into the model.

6 Results and Evaluation

Language B(A) B(L) S-1(A) S-1(L) S-2(A) S-2(L)

Norwegian-Bokmal 69 0.489 52.6 0.71 62.7 0.55
Danish 59.8 0.669 46.1 0.95 49.8 0.87
Urdu 30.3 4.201 31.2 2.48 43.7 1.63
Hindi 31 3.798 33.4 2.34 40.8 2.02
Swedish 54.3 0.884 40.6 1.08 39.4 1.09

Table 1: Accuracies for top-5 languages for low data.

6.1 Results on Test Set

The evaluation results were obtained using the evaluation script and the test set
provided by the shared task organizers. Baseline accuracies were also obtained



Morphological Inflection 13

Language B(A) B(L) S-1(A) S-1(L) S-2(A) S-2(L)

Quechua 66.2 1.706 93 0.28 93 0.28
Bengali 71 0.44 91 0.19 91 0.19
Portuguese 78 0.103 86 0.21 89.6 0.16
Urdu 81.1 0.287 88 0.47 88 0.47
Georgian 73 0.225 87.7 0.32 87.7 0.32

Table 2: Accuracies for top-5 languages for medium data.

Language B(A) B(L) S-1(A) S-1(L) S-2(A) S-2(L)

Basque 6 3.32 100.0 0 100.0 0.0
Welsh 67 0.45 99.4 0.01 100.0 0.0
Hindi 94 0.075 99.3 0.02 100.0 0.0
Portuguese 97.4 0.034 98.5 0.03 100.0 0.0
Persian 77.6 0.567 98.9 0.02 99.9 0.01

Table 3: Accuracies for top-5 languages for high data.

from the baseline model provided. The best five baseline accuracies and Leven-
shtein distances, accuracies and Levenshtein distances for the first submission
and accuracies and Levenshtein distances for the second submission can be found
in Table 1, Table 2 and Table 3 for each of the three dataset sizes: low, medium
and high respectively. In these tables, ’B’ stands for Baseline, ’S-1’ stands for
Submission-1 and ’S-2’ stands for Submission-2. ’A’ stands for accuracy and ’L’
stands for Levenshtein distance.

We have placed the complete set of accuracies and Levenshtein distances for
all languages in a Google drive folder2, sorted by accuracies. The main obser-
vation from these tables is that languages belonging to the same language
family tend to get similar similar results by our system, which is intu-
itively valid (although there are many exceptions). For example, Romance
and Slavic languages tend to occur together in these tables. However, it is not
evident from these tables that morphologically more complex languages should
be harder to learn, which seems to be counter-intuitive. For example, Turkish
is above French. This may be because of hyper-parameters or configurations se-
lected for different languages (which were different, in an attempt to maximize
accuracy on the development data).

Figures 10 to 12 show the correlation between accuracy and Levenshtein
distance for all three sizes of datasets for submission-1.

The results for the other systems in the shared task that we submitted to,
and complete details about the shared task can be found in [13]. The reader may
refer to these results to see a comparison of how our system performed.

2 https://goo.gl/eW46CC



14 Akhilesh Sudhakar, Rajesh Kumar Mundotiya, and Anil Kumar Singh

Fig. 10: Accuracy
vs. Levenshtein Dis-
tance for low data
(submission-1)

Fig. 11: Accuracy vs.
Levenshtein Distance
for medium data
(submission-1)

Fig. 12: Accuracy
vs. Levenshtein Dis-
tance for high data
(submission-1)

6.2 Ablation Studies

Early Stop Patience We observed that for low-sized datasets, both the models
(LSTM as well as GRU based) required that at least 10 epochs be run before
early stop, every time no progress is detected on the validation set. Setting this
patience to less than 5, resulted in near 0 accuracies for most languages and
printing of nonsensical target words. For medium-sized datasets, this patience
value can be set to around 6-8 while for high-sized datasets, it can be set to
around 3-4. However, in order to ensure best results, we set our patience value
to 10 across all models, training sizes and languages in the final system.

External Feature Categories In last year’s version of the shared task [16], the
morphological features in the dataset were annotated along with the category
of each feature. For instance, a sample training feature set from last year is:
‘pos=N,def=DEF,case=NOM/ACC/ GEN, num=SG’. This year, however, the
category of each feature was not provided, i.e., the same example above would
appear in this year’s format as: ’N,DEF, NOM/ACC/GEN,SG’. Our studies
show that while it is conceptually true that the presence of feature categories
means exploring a shorter search space, the absence of them does not make a
difference to the accuracies obtained for high and medium sized datasets. In the
case of low-sized datasets, marginally better accuracies (around 0.5-1%) were
obtained when the categories were incorporated into the dataset (this was done
manually). However, this might also be the effect of random initialization of
parameters.

Choice of Recurrent Unit Simple Recurrent Neural Networks (RNNs) per-
formed the poorest on all sizes of datasets. For low-sized datasets, in almost all
cases, using a GRU gave better results than using an LSTM. On an average, the
accuracy increased by 2.33% when shifting from LSTM to GRU as the choice of
recurrent unit.

In the case of medium-sized datasets, 8 out of 52 languages performed better
with an LSTM than a GRU, while the rest showed better performance with a
GRU.



Morphological Inflection 15

Convolutional Layers We also ran experiments using convolutional layers,
in which the root word was convolved and the convolution was concatenated
along with the root word and passed to the encoder layer (if any). The rest
of the network structure remained the same. For low-sized and medium-sized
datasets, adding convolutional layers resulted in the accuracy dropping to near
0. For high-sized datasets, we were unable to finish running the experiments on
all languages due to lack of time. However for the few languages on which we
performed convolutional ablation studies, it did seem to improve accuracy by
around 1.5% on an average.

Stacking Recurrent Units Deeper models (more than one layer of LSTM/GRU)
resulted in drastic accuracy drops for low-sized datasets. For medium-sized
datasets, 30 out of 52 languages showed an accuracy improvement upon stack-
ing two GRU layers, while the accuracy drop in the rest 22 was not drastic but
appreciable.

7 Future Work

We aim to perform an exhaustive exploration of language-specific enhancements
across all languages in future. Further, we also aim to build separate deep neural
networks for different parts of speech (POS) as preliminary experiments show
that this gives better performance. In this regard and in the general context of
the task of morphological inflection too, we believe that better models can be
built by developing a thorough understanding of the morphological nature of
each language. While it is true that the techniques described in our work can be
used for any language, we hope to customize the configurations by supplement-
ing the word inputs with extra heuristical, rule-based and transduction-based
information that are specific to each language. Further insights can be devel-
oped by clustering the languages based on accuracy and Levenshtein distance
values obtained and correlating these clusters with different classifications. Pos-
sible classifications could be done based on the morphological types of languages,
namely, analytic, synthetic, agglutinative and polysynthetic. This could not only
help in predicting language-specific accuracies for other closely related tasks like
morphological disambiguation, but could also help in fine tuning models better
for these tasks as well as morphological inflection itself.

8 Conclusions

Different configurations of deep neural networks work well for different languages,
based on the morphological properties of the language. It is also true in the
context of this task, that phonological features aid the model to perform better.
However, standalone deep learning may not be the right approach for low-sized
data and hybrid approaches like the one proposed by us give better results.



16 Akhilesh Sudhakar, Rajesh Kumar Mundotiya, and Anil Kumar Singh

Further, deep learning can be augmented with other transduction, rule-based or
knowledge-based methods, to improve on the results we have achieved.

For high-sized data, we achieved accuracies of 100% for some languages. For
medium, the highest was 93% and for low, the highest was 69%.

References

1. Minkov, E., Toutanova, K., Suzuki, H.: Generating complex morphology for ma-
chine translation. In: ACL. Volume 7. (2007) 128–135

2. Chahuneau, V., Smith, N.A., Dyer, C.: Knowledge-rich morphological priors for
bayesian language models, Association for Computational Linguistics (2013)

3. Oflazer, K., Say, B., et al.: Integrating morphology with multi-word expression
processing in turkish. In: Proceedings of the Workshop on Multiword Expressions:
Integrating Processing, Association for Computational Linguistics (2004) 64–71

4. Sudhakar, A., Singh, A.K.: Experiments on morphological reinflection: Conll-2017
shared task. Proceedings of the CoNLL SIGMORPHON 2017 Shared Task: Uni-
versal Morphological Reinflection (2017) 71–78

5. Durrett, G., DeNero, J.: Supervised learning of complete morphological paradigms.
In: Proc. of the 2013 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Atlanta, Georgia
(June 2013) 1185–1195

6. Ahlberg, M., Forsberg, M., Hulden, M.: Semi-supervised learning of morpholog-
ical paradigms and lexicons. In: Proc. of the 14th Conference of the European
Chapter of the Association for Computational Linguistics:Language Technology
(Computational Linguistics), Gothenburg, Sweden (April 2014) 569–578

7. Ahlberg, M., Forsberg, M., Hulden, M.: Paradigm classification in supervised learn-
ing of morphology. In: Proc. of the 2015 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
Denver, Colorado (June 2015) 1024–1029

8. Faruqui, M., Tsvetkov, Y., Neubig, G., Dyer, C.: Morphological inflection genera-
tion using character sequence to sequence learning. In: Proc. of NAACL. (2016)

9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8)
(November 1997) 1735–1780

10. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR
abs/1412.6980 (2014)

11. Bengio, Y.: Practical recommendations for gradient-based training of deep archi-
tectures. In: Neural networks: Tricks of the trade. Springer (2012) 437–478

12. Cho, K., van Merrienboer, B., Gulcehre, C., Bougares, F., Schwenk, H., Bengio, Y.:
Learning phrase representations using rnn encoder-decoder for statistical machine
translation. In: Proc. of EMNLP 2014. (2014)

13. Cotterell, R., Kirov, C., Sylak-Glassman, J., Walther, G., Vylomova, E., Xia, P.,
Faruqui, M., Kübler, S., Yarowsky, D., Eisner, J., Hulden, M.: The CoNLL-
SIGMORPHON 2017 shared task: Universal morphological reinflection in 52 lan-
guages. In: Proceedings of the CoNLL-SIGMORPHON 2017 Shared Task: Univer-
sal Morphological Reinflection, Vancouver, Canada, Association for Computational
Linguistics (August 2017)

14. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word repre-
sentation. In: EMNLP. Volume 14. (2014) 1532–1543



Morphological Inflection 17

15. Singh, A.K.: Digitizing The Legacy of Indian Languages. ICFAI Books, Hyderabad
(2009)

16. Cotterell, R., Kirov, C., Sylak-Glassman, J., Yarowsky, D., Eisner, J., Hulden,
M.: The sigmorphon 2016 shared taskmorphological reinflection. In: Proceedings
of the 14th SIGMORPHON Workshop on Computational Research in Phonetics,
Phonology, and Morphology. (2016) 10–22


