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Abstract. Given a large unlabeled document collection, the aim of this
paper is to develop an accurate and efficient algorithm for solving the
clustering problem over this collection. Document collections typically
contain tens or hundreds of thousands of documents, with thousands or
tens of thousands of features (i.e., distinct words). Most existing clus-
tering algorithms struggle to find accurate solutions on such large data
sets. The proposed algorithm overcomes this difficulty by an incremen-
tal approach, incrementing the number of clusters progressively from an
initial value of one to a set value. At each iteration, the new candidate
cluster is initialized using a partitioning approach which is guaranteed to
minimize the objective function. Experiments have been carried out over
six, diverse datasets and with different evaluation criteria, showing that
the proposed algorithm has outperformed comparable state-of-the-art
clustering algorithms in all cases.

Keywords: Document clustering, Incremental clustering, Spherical k-
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1 Introduction

Text document clustering has received considerable attention in the literature
due to the huge amount of information generated in an electronic form in areas
such as text mining and information retrieval. Given the size of such document
collections, it is vital to be able to bring them into more a structured form.
To this aim, cluster analysis can play an important role in organizing such a
huge amount of documents into meaningful clusters. A cluster can be simply
defined as a collection of data objects (documents here) that are ‘similar’ (under
a suitable similarity definition) to one another and dissimilar from objects in
other clusters.

Most clustering methods applied to unstructured document collections start
with creating a vector space known as a bag-of-words (BoW) model [24]. In this
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model, each document is represented by a vector with the frequencies of each
word in the document. Such a representation is typically very sparse due to the
large number of distinct words. The set of all documents in the vector space is
usually called the document-to-term matrix.

Document clustering can be seen as a specialization of general data clustering.
It was initially used for improving the precision or recall in information retrieval
systems [14, 26] and as an efficient way of finding the nearest neighbors of a
document [7]. Document clustering can be organized over two main stages: in
the first stage, the documents are preprocessed into a usable data representation.
Preprocessing may include some of the following tasks: the exclusion of words
without informational value, known as stop words; the reduction of the words to
their radicals, known as stemming; the uppercase/lowercase conversion, known
as case-folding; and the eventual transformation into vector space. The second
stage is the clustering of the vectorial representations.

Using the vector representation, various classical clustering algorithms such
as the k-means algorithm and its variants, hierarchical agglomerative clustering
and graph-theoretic methods have been applied in the text mining literature; for
detailed reviews, see [1, 8, 11].

The similarity measure is fundamental to formalize a clustering problem. This
measure, in particular, can be defined using distance(-like) functions. Clustering
problems based on the squared Euclidean norm as the similarity measure are
called the minimum sum-of-squares clustering (MSSC) problems. To date, many
different algorithms have been proposed to solve this problem. Amongst them,
the k-means algorithm and its variants have been amongst the most popular
(see, for example, [12, 13] and references therein; and [2–4,15,22]).

Another similarity measure, which is widespread in text mining, is the cosine
measure. The spherical k-means (SKM) algorithm [8] is the variant that uses
the cosine measure. The SKM, in fact, is equivalent to a k-means algorithm
using the Euclidean distance over the projection of the vector space onto the
unit sphere. It has been found to work well for text clustering. The work of [5]
has shown that SKM can also be derived as an EM algorithm for Maximum
Likelihood Estimation of the mean direction parameters of a uniform mixture of
von Mises-Fisher (or Langevin) distributions.

In the literature, there are two main categories of feature extraction methods:
term frequency-based methods [8,9,20,23] and semantic methods [17,18,28,29].
A term frequency-based method is simply based on counting words’ number,
whereas a semantic method attempts to construct an ontology containing words
and their relations. Term frequency-based methods tend to be simpler and more
effective and, for this reason, we adopt them in this work. In particular, we
leverage the term frequency-inverse document frequency (tf-idf) representation
which is the product of the term frequency (tf) (the raw count of the terms
appearing in the document) and the inverse document frequency (idf) which
increases the importance of terms that appear in only a few documents and
conversely decreases the importance of terms appearing in many documents.
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The tf-idf representation has been widely utilized thanks to its computational
efficiency and effectiveness [9, 20,25].

Many document clustering algorithms such as k-means and SKM provide a
means for effectively navigating, summarizing and organizing the information in
the collection. In this paper, we propose an algorithm to improve the solution
provided by SKM with a modest increase of computational load still within the
range of a single-processor machine. Thus, our emphasis is on high accuracy with
a limited increase of computational resources. The algorithm is an extension of
the strategy of the incremental algorithm presented in [2], with the main dif-
ference that it projects each solution to the unit sphere to satisfy the spherical
constraint. In our approach, the documents are first converted to a tf-idf repre-
sentation [8,23]. Normalizing the data vectors helps remove the bias induced by
the length of a document and has generally provided superior results [8, 23, 24].
The vector space model is, then, used as an input to our two-stage algorithm.
We find a better initial solution to the clustering problem in the first stage,
and improve the result iteratively in the second stage by starting from the ini-
tial solution. The main contribution of our algorithm is a procedure to select
better initial cluster centroids on the unit sphere in the first stage (which is
different from the one in [2]), for the benefit of the ensuing MSSC optimization.
The experimental results presented in Section 4 show that the proposed algo-
rithm outperforms comparable one-stage algorithm spherical k-means. Unlike
the spherical k-means algorithm the proposed algorithm as an incremental algo-
rithm solves not only the clustering problem with the given number of clusters
but also all intermediate clustering problems. Moreover, the proposed algorithm
requires significantly less computational time than the spherical k-means algo-
rithm in solving all clustering problems.

The rest of this paper is organized as follows. Section 2 provides a brief
discussion on related works with special focus on the spherical k-means. The
proposed method and related algorithms are presented in Section 3. Data and
numerical results are reported and discussed in Section 4, and finally Section 5
contains some concluding remarks.

Throughout this paper we will use symbols m, n, and k to denote the number
of documents, the number of terms (or feature), and the number of clusters,
respectively. We will use symbol X to denote the set of m documents that we
wish to cluster, and X1, X2, . . . , Xk, to denote each of the k clusters.

2 Problem Formulation

Given the vector space model, the document vectors may be represented as
x1, x2, . . . , xm, with each xi ∈ Rn. Recall that m is the total number of docu-
ments and n stands for the number of unique words in the vector space model. A
clustering of the document collection is its partitioning into the disjoint subsets
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X1, X2, . . . , Xk, i.e.

k⋃
j=1

Xj = {x1, x2, . . . , xm} &Xj ∩X l = ∅, j 6= l.

In SKM, the data are projected onto the unit sphere. Dhillon et al. [8] have
used the popular tf-idf scheme which reads out as (normalized) term frequency-
inverse document frequency [23]. The tf-idf normalization implies that ‖xi‖ = 1,
i.e., each document vector lies on the surface of the unit sphere in Rn. The k-
clustering (or k-partition) problem is formulated as the following optimization
problem: {

min fk(c)

subject to c = (c1, . . . , ck) ∈ Rnk,
(1)

where
fk(c1, . . . , ck) =

∑
x∈X

min
j=1,...,k

d(cj , x). (2)

Here, c1, . . . , ck ∈ Rn are cluster centers and the function d : Rn ×Rn → R+ is
the similarity measure, R+ is the set of nonnegative numbers.

The function fk is called the k-th clustering objective function. The similarity
measure d is defined using the cosine measure, that is for c, x ∈ Rn

d(c, x) = 1− cos(x, c) = 1− 〈x, c〉
‖x‖‖c‖

,

where 〈x, c〉 stands for the inner product of x and c and ‖ · ‖ is the Euclidean
norm in Rn.

Since all document vectors are normalized it is also required that for each
cluster center ci ∈ Rn is also normalized that is: ‖ci‖ = 1, i = 1, . . . , k. In this
case one has the following similarity measure d:

d(c, x) = 1− 〈x, c〉.

Then the k-clustering can be reformulated as the following constrained optimiza-
tion problem: 

min fk(c)

subject to c = (c1, . . . , ck) ∈ Rnk,

‖ci‖ = 1, i = 1, . . . , n.

(3)

The problem (3) is a nonconvex constrained optimization problem and its ob-
jective function is piecewise linear. Due to the minimum operation used in the
definition of this function (see (2)), it is also nonconvex. Since the document
collections usually contain hundreds of thousands of documents, objective func-
tion fk has many local solutions. Furthermore, the typical number of words in
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these collections is thousands or even tens of thousands. Therefore, Problem (3)
is a large-scale optimization problem. Finally, the feasible set in this problem is
nonconvex and it is a thin set in the n-dimensional space. Such problems are
highly challenging not only for global optimization techniques, but also for local
optimization methods. In this paper, we use the spherical k-means algorithm as
our algorithm of choice.

3 The proposed algorithm

The proposed algorithm is based on an incremental approach. The main idea
is the following: instead of working with k clusters from the start, we add the
clusters one by one in successive iterations. At each iteration, we select the initial
position of the added cluster by using a partitioning approach that is described
in Section 3.1. This approach enjoys a performance guarantee that proves key
for the accuracy of the overall algorithm. After the addition of the new initial
cluster, a conventional k-means algorithm is called to re-optimize all the clusters
(3). Then, the algorithm proceeds to the next iteration, until all clusters have
been added.

3.1 Calculation of starting cluster centers

The incremental algorithm proposed in this paper solves the clustering problem
gradually by starting with one cluster and adding a new cluster at a time, up to
the set number. Hereafter we describe the algorithm for determining the initial
position of the cluster added at the k-th iteration.

Assume that the solution c1, . . . , ck−1, k ≥ 2 to the (k−1)-clustering problem
is known. Denote by dik−1 the distance between xi, i = 1, . . . ,m and the closest

cluster center among k − 1 centers c1, . . . , ck−1:

dik−1 = min
{
d(c1, xi), . . . , d(ck−1, xi)

}
. (4)

We will also use the notation dxk−1 for x ∈ {x1, . . . , xm}.
Consider the following two sets:

S1 =
{
y ∈ Rn : d(y, xi) ≥ dik−1, ∀i ∈ {1, . . . ,m}

}
,

S2 =
{
y ∈ Rn : ∃i ∈ {1, . . . ,m} such that d(y, xi) < dik−1

}
.

The set S1 contains all points y ∈ Rn which do not attract any point from the
set X and the set S2 contains all points y ∈ Rn which attract at least one point
from X. It is obvious that cluster centers c1, . . . , ck−1 ∈ S1. Since the number
k of clusters is less than the number of data points in the set X all data points
which are not cluster centers belong to the set S2 (because such points attract
at least themselves) and therefore this set is not empty. Note that S1

⋂
S2 = ∅

and S1

⋃
S2 = Rn.

fk−1(c1, . . . , ck−1) =
1

m

m∑
i=1

dik−1, ∀y ∈ S1.



6

This means by taking any point y ∈ S1 as a starting point for the k-th cluster
center will not decrease the value of the clustering function fk. Therefore, starting
points should not be chosen from the set S1.

Take any y ∈ S2. Then one can divide the set X into two subsets as follows:

B̄1(y) =
{
x ∈ X : d(y, x) ≥ dxk−1

}
,

B̄2(y) =
{
x ∈ X : d(y, x) < dxk−1

}
.

The set B̄2(y) contains all data points x ∈ X which are closer to the point y
than to their cluster centers and the set B̄1(y) contains all other data points.
Since y ∈ S2 the set B̄2(y) 6= ∅. Furthermore, B̄1(y)

⋂
B̄2(y) = ∅ and X =

B̄1(y)
⋃
B̄2(y).

The difference zk(y) between the value of the k-th auxiliary cluster function
with the k-th cluster center y and the value fk−1(c1, . . . , ck−1) for the (k − 1)-
clustering problem is:

zk(y) =
1

m

∑
x∈B̄2(y)

(
dxk−1 − d(y, x)

)
which can be rewritten as

zk(y) =
1

m

∑
x∈X

max
{

0, dxk−1 − d(y, x)
}
. (5)

The difference zk(y) shows the decrease of the value of the k-th cluster function
fk comparing with the value fk−1(c1, . . . , ck−1) if the point (c1, . . . , ck−1, y) is
chosen as the cluster center for the k-clustering problem.

If a data point x ∈ A is the cluster center then this point belongs to the set
S1, otherwise it belongs to the set S2. Therefore we choose a point y from the set
X \S1. We take any y = x ∈ X \S1, compute zk(x) and introduce the following
number:

z1
max = max

x∈X\S1

zk(x). (6)

Let γ1 ∈ [0, 1] be a given number. We compute the following subset of X:

X̄1 =
{
x ∈ X \ S1 : zk(x) ≥ γ1z

1
max

}
. (7)

If γ1 = 0 then X̄1 = X \ S1 and if γ1 = 1 then the set X̄1 contains data points
with the largest decrease z1

max.
For each x ∈ X̄1 we compute the set B̄2(x) and its center c(x). We replace

the point x ∈ X̄1 by the point c(x) because the latter is better representative of
the set B̄2(x) than the former. Denote by X̄2 the set of all such centers. For each
x ∈ X̄2 we compute the number z2

k(x) = zk(x) using (5). Finally, we compute
the following number:

z2
max = max

x∈X̄2

z2
l (x). (8)

The number z2
max represents the largest decrease of the values fl(c

1, . . . , cl−1, x)
among all centers x ∈ X̄2 comparing with the value fk−1(c1, . . . , cl−1).
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Let γ2 ∈ [0, 1] be a given number. We define the following subset of X̄2:

X̄3 =
{
x ∈ X̄2 : z2

l (x) ≥ γ2z
1
max

}
. (9)

If γ2 = 0 then X̄3 = X̄2 and if γ2 = 1 then the set X̄3 contains only centers x
with the largest decrease of the cluster function fk.

All points from the set X̄3 are considered as starting points for solving prob-
lem (3). Therefore, their selection guarantees to maximally decrease the objec-
tive.

The algorithm for finding the initial cluster centers in solving Problem (3)
can be summarized as follows:

Algorithm 1 Algorithm for finding the set of starting cluster centers.

Input: The solution (c1, . . . , ck−1) to the (k − 1)-clustering problem.

Output: The set of starting cluster centers for the k-th cluster center.

Step 0. (Initialization). Select γ1, γ2 ∈ [0, 1].

Step 1. Compute z1
max using (6) and the set X̄1 using (7).

Step 2. Compute z2
max using (8) and the set X̄3 using (9).

3.2 An incremental clustering algorithm and its implementation

In this subsection we present an incremental algorithm for solving Problem (3).

Algorithm 2 An incremental clustering algorithm.

Input: The collection of documents X = {x1, . . . , xm}.
Output: The set of k cluster centers {c1, . . . , ck}, k > 0.

Step 1. (Initialization). Compute the center c1 ∈ Rn of the set X. Set l := 1.

Step 2. (Stopping criterion). Set l := l + 1. If l > k then stop. The k-partition
problem has been solved.

Step 3. (Computation a set of starting points for the next cluster center). Apply
Algorithm 1 to compute the set X̄3 of starting point for the l-th cluster center.

Step 4. (Computation a set of cluster centers). For each ȳ ∈ X̄3 take (c1, . . . , cl−1, ȳ)
as a starting point, solve Problem (3) and find a solution (ŷ1, . . . , ŷl). Denote by
X̄4 a set of all such solutions.

Step 5. (Computation of the best solution). Compute

fmin
l = min

{
fl(ŷ

1, . . . , ŷl) : (ŷ1, . . . , ŷl) ∈ X̄4

}
and the collection of cluster centers (ȳ1, . . . , ȳl) such that

fl(ȳ
1, . . . , ȳl) = fmin

l .

Step 6. (Solution to the l-partition problem). Set cj := ȳj , j = 1, . . . , l as a
solution to the l-th partition problem and go to Step 2.
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We call the proposed Algorithm 2 the Spherical Modified Global k-means (SMGKM).
The most important and time consuming step in this algorithm is Step 4 where
Problem (3) is solved starting from many initial cluster centers. For this problem,
we use a conventional spherical k-means algorithm which allows us to automat-
ically take into account the constraints of Problem (3).

4 Experimental results

In this section we present numerical results on the evaluation of the proposed
method and compare it with the Spherical k-means algorithm (SKM), described
in [8]. We do not include comparison with hierarchical clustering algorithms as
these algorithms have not been widely used in text mining. The reason of using
the SKM for comparison is the similarity of the SKM with our proposed method
in which both algorithms use spherical space and k-means as the base.

4.1 Datasets

To test and compare the proposed algorithm, we have carried out experiments
with six datasets. A brief description of these datasets is given in Table 1 and
more details of the datasets and preprocessing are given below.

Table 1. Dataset summary.

Datasets m n

1. Cora 2,240 2.319
2. Associated Press (APress) 2,246 4,994
3. WebKB 4,199 2,153
4. Reuters 12,902 1,313
5. Phone Calls (PCalls) 13,937 2,696
6. 20 Newsgroups (20Newsg) 18,774 3,103

The Cora data set [19] consists of the abstracts and references of approxi-
mately 34,000 computer science research papers; of these, we selected a subset
of 2410 papers categorized into one of seven subfields of machine learning.

The Associated Press (APress) collection [10] contains Associated Press news
stories from 1988 to 1990. The original data includes over 200,000 documents
with 20 categories. The sample AP data set from [6], which is sampled from a
subset of the TREC AP collection contains 2,246 documents.

The WebKB data set [27] consists of approximately 6000 web pages from
computer science departments of various university, divided into seven cate-
gories: student, faculty, staff, course, project, department and other. In this
paper, we use the four most populous entity-representing categories: student,
faculty, course, and project, which all together contain 4,199 pages.
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The Reuters data set [16] was originally collected by Carnegie Group, Inc. and
Reuters, Ltd. in the course of developing the CONSTRUE text categorization
system. It consists of 21,578 news stories appeared on the Reuters newswire in
1987. We use a subset of data containing 12,902 documents which are manually
assigned to 135 categories.

The 20 Newsgroups dataset (20Newsg) [21] contains postings to Usenet news-
groups. The postings are organized by content into 20 different newsgroups with
about 1000 messages from each newsgroup and are therefore well suited for text
clustering. This collection consists of 18,774 non-empty documents distributed
evenly across 20 newsgroups.

Finally, The Phone Calls dataset (PCalls) is from the Transport Accident
Commission (TAC) which is a major accident compensation agency of the Vic-
torian Government in Australia. It consists of a collection of 593,433 phone
calls from 13,937 single TAC clients recorded by various operators over 5 years.
The phone calls are made for different purposes including, but not limited to:
compensation payments, recovery and return to work, different type of services,
medications and treatments, pain, solicitor engagement and mental health issues.

The following preprocessing steps have been applied to all datasets before
their use in the experiments: 1) removal of numbers, punctuation, symbols and
“stopwords”; 2) synonyms and misspelled words have been replaced with the
base and actual words (for the PCalls dataset); 3) sparse terms (95% sparsity
or more) and infrequently occurring words have been removed; 4) we have also
removed generic words (for the PCalls dataset) such as names and addresses
based on a predefined list. The data have then been projected to a vector space
by using the popular term frequency-inverse document frequency (tf-idf) scheme.

4.2 Discussion and evaluation

Tables 2 and 3 show the best objective function value, fbest, and relative errors,
E1 and E2 for the SKM and SMGKM respectively, where the relative error is
defined as:

Ei =
fi − fbest
fbest

× 100

where fi is the value of the clustering function obtained by i-th algorithm. In
most cases, SMGKM demonstrate better performance, i.e., low values for the
objective function in terms of relative errors, and in some cases the differences
are significant. When the number of clusters is small, SKM performs slightly
better than SMGKM (in some cases) but the differences are not significant.

To further compare and assess the quality of the clusters generated by the
algorithms, we apply two well-known cluster validity indices: the Dunns and
DaviesBouldin validity indices.

The Dunn’s validity index is defined as

I(D) = max
i=1,··· ,k

{
min

j=1,··· ,k;j 6=i

{ d(ci, cj)

maxl=1 ,··· ,k r(cl)

}}
(10)
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Table 2. The function value and relative errors

k
Associated Press Cora WebKB

fbest E1 E2 fbest E1 E2 fbest E1 E2

10 1509.66 0.00 0.15 1475.39 0.00 0.06 2607.65 0.00 0.45
12 1481.68 0.00 0.25 1455.01 0.16 0.00 2567.58 0.00 0.27
15 1456.63 0.00 0.26 1423.41 0.00 0.29 2505.60 0.00 0.09
17 1435.98 0.56 0.00 1406.54 0.00 0.21 2455.62 0.34 0.00
20 1411.64 0.66 0.00 1384.11 0.44 0.00 2408.00 0.65 0.00
25 1380.19 0.95 0.00 1351.01 0.49 0.00 2342.28 0.30 0.00
30 1355.94 0.97 0.00 1324.20 0.89 0.00 2285.21 0.25 0.00
35 1337.06 0.90 0.00 1300.97 1.28 0.00 2229.02 0.62 0.00
40 1316.64 0.95 0.00 1279.14 1.61 0.00 2183.48 0.68 0.00
45 1300.28 0.53 0.00 1262.07 1.79 0.00 2143.49 0.68 0.00
50 1286.99 1.03 0.00 1248.15 1.73 0.00 2099.22 1.01 0.00
55 1274.34 0.70 0.00 1235.44 1.95 0.00 2064.24 1.05 0.00
60 1263.40 0.85 0.00 1223.60 2.48 0.00 2035.21 1.16 0.00
65 1254.37 1.06 0.00 1213.49 1.85 0.00 2009.59 1.64 0.00
70 1245.54 0.82 0.00 1204.21 1.96 0.00 1986.34 1.58 0.00
75 1235.14 0.52 0.00 1195.76 2.13 0.00 1960.96 1.67 0.00
80 1227.43 0.78 0.00 1187.62 1.63 0.00 1939.72 1.74 0.00
85 1220.38 0.04 0.00 1180.06 1.67 0.00 1915.72 2.42 0.00
90 1213.26 0.30 0.00 1172.98 1.72 0.00 1896.69 2.43 0.00
95 1203.35 0.00 0.21 1165.74 1.88 0.00 1879.04 2.64 0.00
100 1198.26 0.00 0.13 1159.05 2.01 0.00 1862.89 2.90 0.00

where d(ci, cj) is the distance between centers ci and cj . The r(cl) is the radius
of the l -th cluster center and is defined as

r(cl) = max
x∈X l

‖cl − x‖, (11)

where k is the number of clusters. The Dunns cluster validity measure maximizes
the inter-cluster distances and minimizes the intra-cluster distances. Therefore,
the number of clusters that maximizes I(D) can demonstrate the optimal number
of the clusters.

The Davies-Bouldin validity index is a measure of within-cluster to between-
cluster separation

I(DB) =
1

k

k∑
i=1

max
j=1,··· ,k;j 6=i

Sk(Xi) + Sk(Xj)

d(ci, cj)
(12)

where k is the number of clusters, Sk(X l) is the average distance of all data
points from the cluster X l to their cluster center cl and d(ci, cj) is the distance
between i-th and j-th cluster centers. Smaller values for the I(DB)means that
clusters are compact and far from each other. Therefore, the smaller I(DB), the
better clustering.
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Table 3. The function value and relative errors

k
Reuters Phone Calls 20 NewsGroups

fbest E1 E2 fbest E1 E2 fbest E1 E2

10 4586.69 0.00 0.06 9493.95 0.00 0.01 12910.54 0.01 0.00
12 4458.53 0.00 0.37 9388.49 0.00 0.16 12772.45 0.00 0.01
15 4289.97 0.00 0.02 9237.82 0.10 0.00 12590.80 0.12 0.00
17 4215.26 0.24 0.00 9144.10 0.53 0.00 12488.07 0.32 0.00
20 4119.90 0.87 0.00 9029.94 0.43 0.00 12367.28 0.15 0.00
25 3984.14 0.69 0.00 8867.60 0.20 0.00 12182.07 0.00 0.09
30 3871.80 1.17 0.00 8729.13 0.23 0.00 12042.95 0.24 0.00
35 3785.61 1.37 0.00 8614.72 0.05 0.00 11898.11 0.00 0.13
40 3719.43 1.41 0.00 8491.54 0.34 0.00 11777.05 0.00 0.27
45 3663.73 0.63 0.00 8385.29 0.23 0.00 11690.82 0.00 0.05

50 3607.86 0.84 0.00 8297.62 0.20 0.00 11559.44 0.13 0.00
55 3555.87 1.20 0.00 8214.63 0.21 0.00 11455.58 0.34 0.00
60 3512.71 1.43 0.00 8139.41 0.15 0.00 11362.46 0.30 0.00
65 3471.35 0.72 0.00 8065.04 0.00 0.06 11282.29 0.30 0.00
70 3431.43 0.95 0.00 7976.79 0.00 0.36 11200.54 0.53 0.00
75 3402.23 1.26 0.00 7931.58 0.00 0.07 11125.10 0.66 0.00
80 3374.66 0.80 0.00 7862.77 0.04 0.00 11044.67 0.60 0.00
85 3344.92 1.07 0.00 7806.99 0.18 0.00 10982.90 0.66 0.00
90 3321.59 1.16 0.00 7756.88 0.14 0.00 10926.60 0.72 0.00
95 3293.53 1.47 0.00 7707.74 0.08 0.00 10874.15 0.49 0.00
100 3271.34 1.15 0.00 7640.79 0.36 0.00 10823.80 0.63 0.00

Figures 1(a) – 1(f) display the Dunn’s cluster validities for SKM and SMGKM
as the number of clusters increases from 10 to 100. Here, the dot lines correspond
to the SKM and solid lines to the SMGKM. Terms “dn SKM” and “dn SMGKM”
stand for Dunn index values using the SKM and SMGKM, respectively. Graphs
for the SMGKM are much more stable than graphs for the SKM when the
number of clusters increases. The reason is likely that the SMGKM exploits an
incremental scheme which adds one cluster each time, while the SKM calculates
all clusters from scratch.

Figures 2(a) – 2(f) show the Davies-Bouldin indices for SKM and SMGKM
as the number of clusters increases. Terms “db SKM” and “db SMGKM” stand
for Davies-Bouldin index values using the SKM and SMGKM, respectively. The
graph for SMGKM is more stable, confirming stability in Figures 1(a) and 1(f).
These figures also demonstrate significant improvements of SMGKM over the
SKM, as the graphs for SMGKM are below (much, when the number of clusters
increases) those for SKM in almost all cases.

Table 4 reports the optimal number of clusters using the Dunn and Davies-
Bouldin measures as well as the total CPU time spent by SKM and SMGKM.
c∗1 and c∗2 stand for the optimal number of clusters using the SKM and SMGKM
and t1 and t2 are the times (cumulative CPU) consumed by SKM and SMGKM,
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(a) Cora (b) Associated Press

(c) WebKB (d) Reuters

(e) Phone Calls (f) 20 NewsGroups

Fig. 1. Cluster validity (Dunn) index for datasets 3 and 4

Table 4. The optimal number of clusters and cumulative CPU time for computing up
to 100 clusters. c∗1 and c∗2 stand for the number of clusters using SKM and SMGKM,
respectively, and t1 and t2 for the time

dataset
Dunn index DB index Total CPU time

c1 c2 c1 c2 t1 t2

Cora 50 40 40 36 1024 1568
APress 77 70 72 74 2601 2088
WebKB 93 92 68 81 2501 1862
Reuters 29 39 10 20 5327 4745
PCalls 89 90 89 88 15861 11710
NewsG 79 81 68 77 27873 20280

respectively. Despite using a less efficient environment for coding, the times for
SMGKM have been lower than those for SKM, except on Cora.
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(a) Cora (b) Associated Press

(c) WebKB (d) Reuters

(e) Phone Calls (f) 20 NewsGroups

Fig. 2. Cluster validity (Davies Bouldin) for datasets 1 – 6

5 Conclusions

In this paper, we have presented an incremental algorithm for document clus-
tering that is capable of finding “deeper” solutions. In the algorithm, a new
cluster is added in turn starting from an initial position that is guaranteed to
maximally decrease the objective function value. Clustering is performed in a
spherical space, meaning that each solution is projected to the unit sphere to
mitigate the potential bias from more frequent words.

In the experiments, we have thoroughly compared our method with the spher-
ical k-means algorithm (SKM) that can be regarded as state-of-the-art for doc-
ument clustering. The results over six challenging datasets have shown that the
proposed algorithm has consistently outperformed SKM under a number of clus-
tering indices (objective function value, Dunn and Davies-Bouldin). This gives us
ground to believe that the proposed algorithm can prove beneficial for large-scale
document clustering applications.
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