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Abstract. Nowadays most of the NLP methods require the tuning of
some parameters. This fact implies that training data must be split into
a development set and a training set to optimise the parameters carefully
before testing. The problem arises from the differences between the de-
velopment and the test set. Indig [5] suggests that for English language
NP-chunking – and probably other tasks as well – one can use the Zipfian
distribution of the development set and test set to transform the param-
eters from the former to the latter. The mayor weakness of his theory is
that it is supported by only one measurement and lacks the comparison
of other transforming methods. In this paper we test rigorously if Indig’s
statement on the parameter transformation is correct for different cor-
pus sizes as well. We also compare the Zipfian distribution to similar but
simpler features. We use the CoNLL-2000 corpus for arbitrary phrase
chunking to get comparable results.

Keywords: parameter optimisation, phrase chunking, sequential tag-
ging

1 Introduction

Arbitrary phrase chunking, also known as shallow parsing is a well-known brack-
eting problem which is most likely to be solved with sequential tagging. For En-
glish the CoNLL-2000 dataset [11] is the de facto standard dataset to measure
tagger performance, that is why we have chosen it for the corpus of our measure-
ments. The current state-of-the-art method, Less is more [5] has improved the
previous state-of-the-art Gut, Besser, Chunker [6] by setting the threshold from
50 to 13 and determined the optimal number by parameter transition between
the development set and the test set. The underlying method uses the same mild
lexicalisation which was introduced in Gut, Besser, Chunker. There are multi-
ple methods described in Less is more, however, the main difference form its
predecessors is a ‘test-set optimised’ parameter resulting in a specialised model
created from the ‘general optimised’ parameters which were obtained on the de-
velopment set. This method achieves the F-score of 95.53% (96.69% for NPs)
with the IOBES representation, which the authors consider as a result close to the
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theoretical maxima, which implies that in this paper we do not plan to overcome
these results, but thoroughly test the stability of the method instead.

Both of the aforementioned methods are based on CRFsuite [9], a simple
linear-chain conditional random field (CRF) tagger1. We must note that the use
of this simple tagger with smart transformation of the input and output before
and after tagging is proven better than a sophisticated tagger with a bidirectional
LSTM-CRF model [4] alone which only achieves 94.46 % F-score. Another in-
teresting fact – shown empirically by Indig and Endrédy [6] – is that there is no
extra information in using and voting between different representations of IOB
sequences as suggested by Shen and Sarkar [10]. Therefore in our measurements
we only check the IOBES representation as it is empirically verified that it has
superior performance to the other four.

Indig [5] used the uniform shape of the underlying Zipfian distributions of
the development and test sets to get better parameter values automatically. He
suggested that the method could be utilised for other tasks like POS tagging and
NER as well, as word frequency is naturally available in all tasks and languages,
but he evaluated the method on English phrase chunking only with one splitting
for different IOB representations. The mayor flaw in the design of the experiment
was – as stated previously in the paper – that IOB representations are equal from
the examined perspective.

The paper is organised as follows: after a brief introduction to the topic we
present multiple measurements on the same corpora with different sizes and splits
and compare the parameter estimation power of the difference of the underlying
Zipfian distributions to other simpler features like the size difference of the corpus
in tokens and types.

2 Chunking nowadays

Chunking in fact is a labelled bracketing problem where each label (B=[, E=],
I=inside, O=outside, S=single) – which denotes the actual state of the brackets
– has an additional identifier to mark the class of words that the content of the
bracket belongs to. For NP-chunking it corresponds to the subtree of the parse
tree of the sentence that contains the bracketed phrase. The main advantage of
this method to real parsing is that chunks can be assigned to tokens with less
computational effort compared to a full-fledged accurate parser. Moreover, many
languages still lack this kind of parser, but have rather small or medium-sized,
manually annotated corpora which can be used for sequential tagging. The other
advantage of the method is that one can solve tasks including but not limited
to Part-of-Speech (POS) tagging and Named-entity recognition (NER) with the
same tagger framework. For most of the languages, the aforementioned problems
have an off-the-shelf solution which can be used to overcome the lack of a real
parser.

1 This tagger achieves 93.79% without lexicalisation for arbitrary phrase chunking on
the IOBES representation
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Traditionally, the number of classes had to be reduced to speed up the pro-
cess, but this minor improvement can be safely ignored nowadays. Reducing the
number of labels introduces two problems: (a) the decrease of accuracy because
it became harder for the tagger to decide between the remaining rather complex
classes, (b) Indig and Endrédy [6] as well as Indig [5] point out that with the
reduced number of classes (which comes from different IOB representation) and
also the extended number of classes (which comes from lexicalisation) damage
the structure of the tag sequences – in other words the well-formedness –, which
was ignored to that point in the literature.

Indig and Endrédy states that the conversion between different IOB represen-
tations is not trivial and is the most flawed part of the previous state-of-the-art
method [10]. They also state that if one has to convert between representations,
he or she should use the Stanford CoreNLP’s IOBUtils [7] which has the proper
converter available to reliably convert between each representation and as a side
effect also fix well-formedness issues. Our target method, Less is more also used
this feature in the measurements so we will follow this path.

2.1 Lexicalisation

Molina and Pla [8] invented a lexicalisation method (in this paper we call it
full lexicalisation) which was thoroughly investigated by Indig and Endrédy [6].
They invented a lighter variant with less labels (mild lexicalisation) which had
superior performance in their experiments resulting in a new-state-of-the-art
method (see Table 1. for the comparison of the different lexicalisation variants).
Later in Less is more this variant was used with different thresholds.

Table 1. Mild lexicalisation: only IOB labels of the words above a given frequency
threshold are augmented with the word and with its POS tag, otherwise the fields are
left untouched. (‘+’ sign is used as a separator)

Unlexicalised Lexicalised
Original format Full Mild (just words)

Word POS IOB Label POS IOB Label POS IOB Label
Rockwell NNP B-NP NNP NNP+B-NP NNP B-NP
said VBD O VBD O VBD O
the DT B-NP the+DT the+DT+B-NP the+DT the+DT+B-NP
agreement NN I-NP NN NN+I-NP NN I-NP

The authors’ original intention with Gut, Besser, Chunker was to use the
lighter lexicalisation form to adapt the method for agglutinative languages like
Hungarian, but they have found that their method – with the reduced tagset – is
still not feasible due to the high number of tags. Further research on the optimal
threshold [5] had finally lead to a dead end, because the new state-of-the-art
results relied on a significantly lower threshold 13 (instead of the previous 50)
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largely increasing the number of tags in the tagset. Indig claimed [5] that if one
would lexicalise all vocabulary words, the whole problem could be reduced into a
POS-tagging problem, with some extra tags added to represent the bracketing,
so a totally different approach would be needed to maintain feasible training
time.

To visualize the aforementioned problem of the different thresholds in differ-
ent languages on different sized corpora, one can easily draw something similar
to Figure 1.
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Fig. 1. The new distinct token rate as the function of corpus size for English (CoNLL-
2000 training data) and Hungarian (HGC [2]) corpora. Different minimal word fre-
quency thresholds are also marked.

For agglutinative languages – in this case for Hungarian2 – the rate of the
words are rising even when the English word rate stabilises at larger corpus
sizes. The interesting fact is that if we cut down low frequency tokens as done
with lexicalisation, one can see that both languages’ word rate stabilises even
for small corpora. Interestingly for Hungarian the 13 as threshold yields less
distinct tokens compared to the English counterpart. The verification that the

2 For the Hungarian corpus we used the first CoNLL-2000 training data sized part of
the Hungarian Gigaword Corpus [2].
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two corpora yield two Zipfian distribution with different parameters is left for
the reader.

The above fact enables us to state that for English the lexicalisation method
is stable and feasible with a specific amount of training material, but for aggluti-
native languages the continuous growth of the vocabulary and the high number
of rare tokens do not allow the direct usage of this method – because insane
amount of manually created training data would be needed. As we can see that
the same threshold value can mean very different values for different sized cor-
pora. This forces one to accommodate the actual threshold for a specific corpus
and task. In the literature one can find many forms of using a threshold be-
cause it ‘just worked’ for a specific task (for example in POS tagging [1] and in
NP-chunking [10] as well). Papers citing the specific paper blindly use the same
threshold without a doubt. We argue that in any case one must disclose why
that specific threshold was chosen and whether the measurements support it.
One threshold does not fit all, therefore sometimes it needs to be transformed
as we show it in the next section.

3 Parameter Transformation to Adapt the Model

In machine translation, different domains of text are needed to be translated.
In some domain the quantity of the text is limited, so it is impossible to train
a full translation system on it. Therefore there is a method of unsupervised
adaptation of the general model to the source domain to improve the quality of
the translation [3]. One must feed the source side of the test set to the translation
system in order to adapt it to the specific test corpus.

This method is very similar to the threshold translation done Less is more for
arbitrary phrase chunking where the problem with parameter optimisation arises
form the difference between the test and development sets. The development set
has similar properties as the training set that it is stripped from, but in real life
the test set is from another corpus with different frequency distribution of word
forms. We used the CoNLL-2000 dataset and stripped every 10th sentence from
the training set for development set resulting in the following three corpora with
their respective sizes: the training set is 198,870, the development set is 21,793
and the test set is 49,389 token long. So if one would set an optimal threshold X
from the development set, which is bound to the small size of the development
set it would not fit to the distribution of the words in the much larger test set.

To address this problem, Indig [5] uses the two underlying Zipfian distribu-
tions of the development and the test sets – which have different characteristics
– and uses linear optimisation to transform the threshold to the other set using
the following formula: minx,y(ax + y) as it can be seen in Figure 2. The tan-
gent of the optimal threshold level on the Zipfian curve (denoted with a in the
formula) is computed using the two neighbouring points of the curve. Indig’s
theory is that this tangent should be the same on both curves at the optimal
threshold because of the invariant properties of the two Zipfian curves. If one
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Fig. 2. Zipfian distribution of the development and test sets. The tangent of the curve
corresponding to the lexicalisation level producing the maximum score on the develop-
ment set is transformed to the test set by linear optimization.

would blindly accept X as a threshold it would point to a different tangent of
the Zipfian curve which has different properties.

So the transformation is reasonable, but nothing has been said so far about
the stability of the method on different corpus sizes or other promising features.
In the following sections we compare this heuristic to other simpler methods for
obtaining the optimal threshold on the test set. We also test this method with
different corpus sizes and splitting.

4 Method

We separated a development set from the CoNLL-2000 training set (in IOBES

representation) by using the 10% of sentences as it was created in the aforemen-
tioned papers. The difference is that we tested all ten splittings (1st, 2nd, 3rd,
etc. sentence was used as development set) and also we reduced the training cor-
pus size to the half to see how it affects the method. We used mild lexicalisation
and the CRFsuite tagger. For each of the splits we applied training and test
runs for the development sets with different lexicalisation levels around 13 to see
which threshold yields the optimal results. The resulting word sets were used for
lexicalisation. We lexicalised the three sets according to each lexicalisation level
and tagged both the development and the test set yielding two tagging results
per lexicalisation level per split. The resulting tagged sets were then delexicalised
and the well-formedness of tag sequences was fixed with IOBTools converter of
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CoreNLP [7] before evaluation. The gold standard annotation is only revealed
in the evaluation step until that point it was treated as non-existent as it is for
real life data.

In order to determine the effect of the transformation method, we explored
the resulting scores and searched for the best F-score achieved in the development
phase to set the according lexicalisation level for the measurements afterwards
in the test phase. This method has been repeated for the different splits and also
on the halved training corpus. The last free parameter of the measurement was
the transformation algorithm. We tested the following transformation methods:

– Use the same value (raw threshold yield from the development set)
– Use the Zipfian distribution presented in Section 3
– Multiply with the ratio of the distinct token number of the development and

the test set
– Multiply with the ratio of the size of the development and the test set

5 Results

For each lexicalisation level we tagged the development set and the test set.
We selected the lexicalisation level with the best result for each eleven pair.
This method yield two type of result: (a) The best threshold for all split on
the development set to work with in the later steps. (b) The ideal solution for
all split on the test set which helps to set an upper bound for the examined
methods (see Table 2.). In the next step we transformed the threshold obtained
from the development set to the test set with all four methods. The transformed
lexicalisation levels were checked among the results of the test set and yielded
the actual results reachable with the four methods on the splits (see Table 3).

Table 2. The best lexicalisation levels for the development and the test set. The
lexicalisation level of the former is the baseline of the transformations and the score of
the latter is the ceiling of the method.

1 2 3 4 5 6 7 8 9
10

(orig)
Halved
corpus

development
set

94.72 93.84 94.98 95.01 94.41 94.46 94.54 95.32 95.1 94.99 95.03
12 14 16 15 16 11 14 13 15 16 7

test
set

94.79 94.11 95.21 94.68 94.94 95.39 94.7 95.63 95.19 95.62 95.61
13 18 15 12 13 13 12 14 17 14 8

As we do not reveal the gold standard annotation of the test set until the
final evaluation part, all presented methods (Section 4 and 3) can be used in real
life for any test set with or without gold standard data. The optimal parameters
(threshold) are set previously on the development set therefore, we do not train
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on (the gold standard annotation of) test set. Independently, by transforming
‘blindly’ the optimal threshold gained from the development set to the test using
the four methods, we do not utilise (the gold standard annotation of) the test
set, just the input corpora – which are available naturally – for the parameter
adjustment.

Table 3. The final scores for the test set (with the transformed lexicalisation levels).

1 2 3 4 5 6 7 8 9
10

(orig)
Halved
corpus

raw
threshold

94.45 93.39 94.4 93.61 94.13 94.29 94.4 95.24 94.92 94.87 94.82
12 14 16 15 16 11 14 13 15 16 7

Zipfian
distribution

94.76 94.0 95.13 94.63 94.87 95.32 94.62 95.51 95.13 95.53 95.49
15 16 14 11 15 15 11 12 14 13 9

distinct token
ratio

93.16 93.4 94.25 93.17 93.01 94.57 94.4 94.6 94.29 95.02 92.21
17 12 17 18 12 14 14 11 16 15 14

corpus size
ratio

94.24 93.66 94.4 93.15 93.78 95.32 94.06 94.6 94.92 94.89 93.44
16 13 16 16 17 15 13 11 15 11 12

In Table 3 – which contains the quantitative analysis of the different lexical-
isation models along with lexicalisation thresholds for different splits – one can
see that most of the lexicalisation levels that belong to the best F-scores (%) are
near 13 which was set by Indig [5]. We can conclude that each lexicalisation level
behaves similarly regardless of the tested set, but the behaviour of the tested
parameter transition models are quite different. The Zipfian distribution as the
transformation method turned out to be the best heuristic and stable even when
the training corpus were halved, while the tested simpler methods could not
reliably estimate the parameter for the test set. We think that this is because
the amount of the encoded information regarding the corpus is lower than in
the Zipfian distribution. In the 6th split, the corpus size ratio method reached
the same score as the Zipfian, but this means it is not stable enough in different
conditions. We can conclude that the parameter transformation in Less is more
is the best of the tested variants yielding the state-of-the-art score (see Table 4)
and it is stable across multiple splitting.

Table 4. Summary of final F-scores

chunking method
arbitrary
phrases

NPs

Shen and Sarkar [10] 94.01 95.23
Indig and Endrédy [6] 95.06 96.49
Indig [5] (13 as threshold) 95.53 96.69
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6 Conclusion and Future Work

We presented a thorough analysis of the transformation of the optimal threshold
for multiple splitting with multiple heuristics on English arbitrary phrase chunk-
ing as a test case. One of the tested heuristics was the current state-of-the-art
method. The examined state-of-the-art method has proven to be better than the
other simpler methods compared, as the Zipfian distribution encodes the most
important features of the corpus – which were tested – as the number of tokens
(as the frequency) and the number of types (as the rank). We can not create a
corpus that does not correspond to the Zipfian distribution which implies that
changing the frequency of a selected element is bound to the frequency of other
elements including the ones that the corpus does not contain.

The best tested method can be used to transform the parameters gained on
the development set to the test set taking advantage of the invariant proper-
ties of the similarity of the two frequency distributions – which are naturally
available – in order to have better and possibly more stable results. Using this
transformation, the results of the tagging could be improved near to the global
optima of the method. We think lexicalisation level transforming is relevant for
other tasks that benefit from finding frequency cut-offs across corpora as well.

Due to the fact that frequency distributions do not behave like normal func-
tions because of the individual differences in the data, the linear optimisation
method did not achieve the best F-scores. A higher level approximation that
takes this fact into account better and uses more global information could make
this method applicable. To adapt the phrase chunking method to agglutina-
tive languages or to develop it further, one must do something more similar to
POS-tagging than the traditional approach which may be done in parallel in the
future.
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