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Abstract. As job ads are getting more prevalent online, an automated
analysis is becoming increasingly important, especially in the field of
human resource management. In this paper, we propose an approach
to automatically segment job ads by predefined categories like the de-
scription of a job or the offering company, which is needed to categorize
and quantify different aspects of job ads. Using a manually annotated
data set, textual features are extracted for each segment type in a first
step and utilized to train state-of-the-art machine learning classification
methods. Subsequently, these models are used by iterative algorithms
to detect the individual segments. Using several optimization techniques
like detecting typical segment start phrases, comprehensive evaluations
show promising results.

1 Introduction

With the rise of the interconnected world wide web, the amount of data digitally
transferred through various channels is increasing steadily. Especially businesses
have adjusted and optimized their workflows by utilizing new possibilities of
data exchange in many areas like allowing location-separated global teams or
performing targeted social media marketing campaigns. Consequently, also the
publication of job ads has been expanded or even completely shifted from print
media to online services. With massive amounts of digitally available job ads,
a crucial task in the field of human resource management (HRM) is to sys-
tematically analyze them to be able to answer questions like “What does the
market want?”, “Which companies search for which person types?” or “In which
domains are social skills more important?” [4, 21]

Typical study examples include attempts to detect trending key requirements
demanded by employers in a specific domain, or the extraction of what is offered
by companies in return (e.g., [1, 3]). Most of those studies are done by manual
inspection of advertisements, which has the drawback that only a small subset
of potential sources can be examined due to limitations of human resources.
To conduct quantitative research, an automated textual analysis is needed. A
fundamental prerequisite for making meaningful statements is thereby an auto-
mated identification of well-known segments like the description of the job tasks



or requirements within ads. For example, it makes a crucial difference if the
phrase “work experience” is stated within the job requirements or appears in a
sentence like “You will be integrated in a team with long-term work experience”,
as different conclusions can be drawn depending on the position of the phrase.

Given that a job ad depicts the employer’s offer and the future employee’s
duties, the job ad content can be divided into four categories [6], whereby not nec-
essarily all of them have to be present: the (i) company description introduces
the offering company, who they are, what they do etc., the (ii) job description
describes the job itself with all its components, in the (iii) requirements it is
stated which education, technical/social skills etc. are demanded from the ap-
plicant, and finally the (iv) offer segment describes what the company offers,
including salary and other benefits. Examples of those four categories are shown
in Table 1.1

Category Example 1 Example 2

company
description

In 2017, CompanyX not only launched a
completely new product, it created and has
led ever since a whole new product cate-
gory. Nowadays CompanyX employs more
than 12000 people in over 165 countries, sell-
ing over 5 billion products a year. The World
of CompanyX provides the forum for you to
use your talent and passion, to develop your-
self and make an impact.

About us: we look for innovation everywhere. For 130
years, we have been at the forefront of innovation, but
finding solutions to the world’s biggest problems has never
been more important than right now. Join us today and
become an essential part of the solution!

job
description

The Controller role is responsible for acting as
business partner to the Sr. VP or VP of the
defined area and the respective management
team. Project lead and participation in the re-
spective functional area is also part of the role.
In addition, steering support processes within
his/her defined area and contributing to core
financial processes is expected from the posi-
tion holder as well.

Your responsibilities

– Work on the software verification (component test,
system test, building verification environment)

– Develop automated test cases and work closely with
the development team to ensure testability

– Take part in the analysis of problems that occur in
live operations

– Travel in order to directly support our clients in the
verification phase of the project

require-
ments

Because our business is dynamic and advances
in science and technology require new meth-
ods of production we are looking for individ-
uals who can do the following: (i) collabo-
rate with team members in the identification
and implementation of continuous improve-
ment initiatives and action plans. (ii) Sup-
port activities in the areas of cost contain-
ment, efficiency, productivity, energy conser-
vation, waste minimization, operational excel-
lence and lean practices.

Your profile

– Experience with Scrum or other iterative methodolo-
gies and experience with C# Development

– Minimum of 4 years of experience designing and de-
veloping systems in a .Net environment

– Experience with JavaScript, not only jQuery
– Prior experience with a source control system (SVN,

GIT, TFS, . . . )
– Good verbal and written communication skills in En-

glish and German (at least level B2)

offer

The minimum annual salary for the position
is 50,000$ gross, whereby the effective salary
is based on your qualification and experience.

We offer:

– an interesting job within the packaging & paper in-
dustry

– to be part of a successful multicultural company
– an empowering environment
– new office building in the city center
– several attractive social benefits

Table 1: Examples for the Different Segment Types (Anonymized).

1 Note that while the example is provided in English for better understandability, the
data used throughout this paper is in German.



This paper presents an approach to automatically detect those categories, if
present, by applying textual analysis based on state-of-the-art machine learning
techniques. It can thereby be seen as a hybrid approach that incorporates both
machine learning techniques as well as specifically developed algorithms operat-
ing on top. Respectively, the two major steps are: (i) training a model in order
to be able to classify each segment, and (ii) calculating the final segmentation
utilizing this model. In the first step, a data set with manually assigned ground
truth is used to train a model which is able to identify each segment type with
high accuracy when it is given correctly separated segments as input, i.e., one of
the four categories and not overlapping structures. Using this model, algorithms
are designed to enable an automatic classification even if the borders are not
previously known, and thus segmenting and clustering the job ad by the defined
categories.

Summarizing the main contribution of this paper, we present an algorith-
mic text segmentation approach that is specifically tailored for job ads. Utilizing
job-ad-specific knowledge, experiments reveal that algorithmic segmentation rep-
resents a valid and comparable alternative to Conditional Random Fields (CRF)
[17], a state-of-the-art technique used in text segmentation and tagging.

The rest of this paper is organized as follows: Section 2 briefly outlines related
work, and Section 3 explains the generation of the model in detail, which is
needed as a prerequisite for the actual job ad segmentation presented in Section
4. The resulting basic algorithm is evaluated in Section 5, which is improved
and reevaluated in Section 6. Finally, a conclusion and possible future work is
discussed in Section 7.

2 Related Work

Job advertisements have become more prevalent online, and they have shown
to improve the chances of being employed [16]. Therefore, research on job ads
is becoming more important in many fields, with classic examples ranging from
optimizing skill sets for specific positions [1] to optimizing strategies for HR de-
partments [11]. The information to be gained from the text differs greatly. For
example, for some applications detailed features that are required by potential
applicants are extracted [3], while others try to extract information to fill specific
templates [7]. Also, complex frameworks have been constructed to automatically
use job ads and distribute them over different channels [15], where detailed infor-
mation is extracted by rule-based models, including regular expressions and other
manually tailored methods. In order to improve the extraction procedures, one
goal is to detect specific topics within the text, whereby there exists no general
rule of how many parts a job should be divided into. For example, [18] extract
13 different categories from the text of French job ads, including, e.g., contact
information or mobility requirements, whereas [34] divide their documents into
3 more general sections (education, job title and sector). Both approaches rely
on common textual features like word, character or POS-tag frequencies.



To cope with the general text and/or topic segmentation problem, a wide
range of different methods is in use, often based on the research by Hearst
[14], in which the lexical cohesion of terms is analyzed. Generally, approaches
utilizing the lexical cohesion of segments follow either a local or global strategy.
Local methods thereby process documents using fixed-sized fragments, aiming
to locally detect significant changes in cohesion (e.g., [14, 12]). On the other
hand, global methods try to maximize the lexical cohesion for each segment
from a global perspective (e.g. [8, 32]). Due to the fact that both strategies have
their pros and cons, i.e., leading to different accuracies in different situations,
e.g., Simon et al. propose a graph-based hybrid approach [29]. With respect
to this terminology, the presented approach in this paper can also be seen as
a text segmentation problem that falls into the hybrid category, as it locally
traverses text blocks using sliding windows while considering the global view.
Nevertheless, in contrast to typical approaches in this field, the ad segmentation
does not aim to draw borders based on topic or genre changes, but by predefined
job ad categories. Moreover, segments must be attributed to those categories,
i.e., only finding borders is insufficient in this case.

In terms of style markers used, approaches utilize different features and meth-
ods, e.g., Bayesian models [10], Hidden Markov Models [5], vocabulary analysis
in various forms like word stem repetitions [24] or word frequency models [25].
While there exist some recent papers (e.g., [26, 20]) that include a comparison
between some of the segmentation approaches on the same data sets, in general it
is difficult to compare performances due to the heterogeneous problem and data
types being approached. To counter this problem, the PAN workshop series2

recently proposed tasks to create stylistic clusters within documents, revealing
that accurate stylistic segmentation is still a difficult problem [30, 31].

With respect to automatically labelling tokens from a text document (e.g.,
POS tagging or Named Entity Recognition), Conditional Random Fields (CRF)
have proven to be effective [28, 19]. Moreover, they have successfully been used for
other sequential labeling problems, such as detecting common fields like authors,
title, year or publisher from the headers and citations of research papers [22].

3 Preliminary Experiments: Training a Textual Model

To tackle the problem of automatically detecting the four predefined segment
types (i) company description, (ii) job description, (iii) requirements and (iv)
offer within an unseen job ad, at first a textual model is needed that can differ-
entiate between those segments. I.e., arbitrarily given one of those segments, the
model should automatically be able to predict the correct one based on textual
characteristics. In this work, two variants, i.e., models based on dictionaries and
machine-learned models have been built and tested. Both variants are presented
in the following and are created on the basis of a manually tagged data set

2 http://pan.webis.de, visited Jan. 2018



consisting of approximately 1,200 manually tagged Austrian job ads, written in
German language3.

3.1 Dictionary-Based Models

Due to the fact that job ads are formulated very heterogeneously, e.g., contain-
ing full sentences describing the job in detail, or consisting basically only of a
job title accompanied by bullet lists, the main unit taken into account are words
(including stemming and n-grams). As a first attempt, dictionaries for each cat-
egory are created using the tagged data set. The prediction is then made by
comparing the given segment with the dictionaries and computing similarities.
Concretely, the following methods have been tested:

(1.) Simple Stems: In this variant the dictionary of a segment consists of all
occurring stems and their normalized weights. Given an unseen segment S, the
similarity to a dictionary D is then calculated by summing up the weights in
D for every occurring stem in S. By using this computation, important stems
that frequently appear in a specific segment are also of higher importance with
respect to the final similarity score.

(2.) N-Grams: This approach is very similar to the previous one and only
replaces stems by character n-grams (using n = {2, 3, 4, 5, 6}). Thus, a dictio-
nary contains all occurring n-grams including their normalized weights, and the
similarity is computed by summing up the weights of all matching n-grams.

(3.) Lucene: Finally, the query model of the Java library Lucene4 has been
utilized, which uses the tf-idf metric and vector space models. Thereby a doc-
ument is created for each segment type by concatenating all samples, which is
subsequently given to Lucene to create an appropriate index. To be specific, four
different indices are created, each consisting of only one document containing all
samples of the respective job ad category. Finally, the similarity of an unseen
segment S to a dictionary D is then computed as follows: For each word in
S, a query is formed that consists of this word only, and the similarity score
for the dictionary document is retrieved from Lucene. The overall score is then
computed by summing up the delivered scores of all queries (words).

3.2 Machine-Learned Models

As an alternative to the dictionary-based prediction, common machine learn-
ing techniques have been applied to build a model which can predict the seg-
ment type. The list of provided features is as follows: (i) single word stems (1s),
stemmed word 2-grams (2s) and stemmed word 3-grams (3s), each of them by
removing or keeping stop words (nostop / stop), (ii) all possible combinations
of the previous features (e.g., 1s-3s-nostop for using single stems and stemmed
word 3-grams, by eliminating stop words), and (iii) character n-grams using
n = {2, 3, 4, 5, 6}.

3 original data provided by textkernel, https://www.textkernel.com, visited Jan. 2018
4 Lucene, https://lucene.apache.org, visited Jan. 2018



To determine the best working algorithm for this approach, several com-
monly used methods have been tested. Using the WEKA toolkit as a general
framework [13], the following classifiers have been utilized: Naive Bayes a Bayes
Network using the K2 classifier, Large Linear Classification using LibLinear, a
support vector machine using LibSVM with nu-SVC classification, a k-Nearest-
Neighbours classifier (kNN)using k = 1, PART, and a pruned C4.5 decision
tree (J48). Thereby all classifiers have been used with their respective standard
settings.

3.3 Model Evaluation

Both the dictionary-based as well as the machine-learned models have been eval-
uated using a manually tagged data set, which has been created from a subset of
1,200 samples of all Austrian job ads in 2015. All considered ads are formulated
in German language, and manually segmented into the four segment types by
an expert group of three persons with high experience in the human resource
management field. The content of the samples thereby varies from mainly just
bullet lists to fully formulated, grammatically correct sentences. Moreover, seg-
ment types may also be spread over multiple positions in the text, e.g., stating
a job requirement at the beginning as well as at the end of an ad.

The data set has been divided into two halves, whereby one half has been
used as the training/test corpus for the evaluation of the models, and the other
half for the evaluation of the segmentation algorithm (see Section 5). From the
600 job ads serving for the model evaluation, 300 have been used to train the
models, i.e., to build the dictionaries or to train the classifiers, respectively, and
the remainder has been used for testing. Finally, the size of the dictionaries (ds)
has been parameterized (except for Lucene), choosing the dictionary to contain
only the 50, 75, 100, 150 or 200 most frequent stems/n-grams, or to contain all
of them. In case of the machine-learned models, the number of features has also
been parameterized by the same criteria.

method ds cmp job offer req avg
Lucene all 85.7 84.8 89.2 93.1 88.2
5-grams 75 73.2 76.6 81.4 88.3 79.9
6-grams 75 72.3 76.6 81.8 84.0 78.7
stems 200 75.3 72.7 77.9 87.0 78.2
4-grams 75 69.3 75.3 74.9 81.4 75.2
3-grams 100 61.0 69.3 66.7 75.8 68.2

(a) Dictionary-Based Models

classifier ds features cmp job offer req avg
LibSVM 100 1s-2s-stop 94.8 94.7 97.0 97.9 96.1
BayesNet 150 4-grams 92.5 92.7 97.2 96.1 94.6
Naive Bayes 75 1s-3s-stop 93.0 92.1 95.5 96.4 94.2
kNN 150 5-grams 88.2 92.1 93.2 96.8 92.6
LibLinear 150 4-grams 88.0 93.1 96.3 90.8 92.0
PART 100 1s-3s-stop 81.0 84.8 90.4 89.4 86.4
J48 100 1s-3s-stop 79.1 82.2 91.2 89.6 85.5

(b) Machine-Learned Models

Table 2: Best Accuracies of Dictionary-Based and Machine-Learned Models in
Percent, Given Already Segmented Categories.



The best results for both dictionary-based and machine-learned models are
shown in Table 2, where it can be seen that – while Lucene performs best for
the former – most machine learning algorithms outperform it substantially. By
utilizing frequencies of single stems and stemmed 2-grams, LibSVM could achieve
an accuracy of 96%. In general, good accuracies are achieved for all four segment
types by restricting the number of features, with the offer and requirement type
having slightly better values.

4 Ad Segmentation

According to the nature of most job ads, which are given as unstructured full
texts, the previously discussed classification cannot be used as is, because the
borders of the different segments are not known. That is, a classifier can only
predict the segment type with high accuracy if the complete and correctly sepa-
rated segment is given as input. To tackle this limitation, an algorithm has been
developed that is based on the constrained classifier, but allows to estimate seg-
ment borders. In the first step, a model-based probability is calculated for each
text position to belong to each segment type. Subsequently, these values serve
as input for the final ad segmentation, basically by locating probability peaks
and applying thresholds to widen a segment.

4.1 Applying the Model

Given a full text job ad, at first a probability for each segment type and text
position (token) is estimated. This is done by iteratively traversing the text
using sliding windows of length wl and step ws, using the model to predict a
vector [pC , pJ , pO, pR] for each window. The values in this vector correspond
to the probability for the window to be of the type company, job, offer and
requirement, respectively. For example, Fig. 1 shows three windows of length
seven, where for each of the windows a corresponding vector is computed using
the model. The window step ws in the example is three tokens.

After processing all sliding windows, the probability vector for each token
is computed by calculating the average of all predicted window vectors where
the respective token appears. In the example, the first three words have been
predicted by only one window, and thus the probability vectors for those words
correspond to the vector of the corresponding window. On the other side, the
tokens ’of ’, ’our’, ’team’ have been predicted by two windows, and thus the
token vectors represent the average of those. Finally, ’you’ has been predicted
by three windows and is consequently calculated as the average of all three
involved windows.

The overall procedure can be formalized as is stated in Algorithm 1. Given
the consecutive list of tokens T of the job ad, it computes the average probability
vector Pi for each token Ti by applying the model function prob(t) on the respec-
tive tokens t of each window. According to the results of Section 3.3, machine-
learned models are used for calculating the respective probabilities. Thereby, as



classifier ds method cmp job offer req avg
LibSVM 100 1s-2s-stop 94.8 94.7 97.0 97.9 96.1
BayesNet 150 4-grams 92.5 92.7 97.2 96.1 94.6
Naive Bayes 75 1s-3s-stop 93.0 92.1 95.5 96.4 94.2
kNN 150 5-grams 88.2 92.1 93.2 96.8 92.6
LibLinear 150 4-grams 88.0 93.1 96.3 90.8 92.0
PART 100 1s-3s-stop 81.0 84.8 90.4 89.4 86.4
J48 100 1s-3s-stop 79.1 82.2 91.2 89.6 85.5

Table 2: Best Accuracies of Machine-Learned Models in Percent.

feature acc.
1s-2s-stop 96.1
1s-nostop 95.9
1s-3s-nostop 95.9
1s-3s-stop 95.9
1s-stop 95.8
1s-2s-nostop 95.6
4-grams 95.1
5-grams 94.4

feature acc.
3-grams 94.4
6-grams 94.0
2s-stop 92.6
2s-nostop 83.2
3s-stop 77.1
3s-nostop 57.5
1s-2s-3s-stop ?
1s-2s-3s-nostop ?

Table 3: Best Accuracy By Feature in Percent.

discussed classification cannot be used as is, be-
cause the borders of the different segments are not
known. That is, a classifier can only predict the
segment type with high accuracy if the complete
and correctly separated segment is given as input.
To tackle this limitation, an algorithm has been de-
veloped that is based on the constrained classifier,
but allows to estimate segment borders. In the first
step, a model-based probability is calculated for
each text position to belong to each segment type.
Subsequently, these values serve as input for the
final ad segmentation, basically by locating prob-
ability peaks and applying thresholds to widen a
segment.

3.1 Applying the Model

Given a full text job ad, the task of the first step
is to estimate a probability for each segment type
and text position, i.e., for each token. This is
done by iteratively traversing the text using slid-
ing windows, asking the model to predict a vec-
tor [pc, pj , po, pr] for each window. The values
in this vector correspond to the probability for the
window to be of the type company, job, offer and
requirement, respectively. For each token, a list
of such vectors is kept that stores all predictions.
This means, that for all tokens in the currently pre-
dicted window, the list is appended by the current
prediction vector. Finally, after processing all slid-
ing windows, the final probability vector for a to-
ken is computed by calculating the average of all
stored vectors.
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basic approach...

3.2 Calculating the Final Segmentation

4 Evaluation

metrics eval basic approach...

textkernel...

classifier ds method cmp job offer req avg
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tor [pc, pj , po, pr] for each window. The values
in this vector correspond to the probability for the
window to be of the type company, job, offer and
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classifier ds method cmp job offer req avg
LibSVM 100 1s-2s-stop 94.8 94.7 97.0 97.9 96.1
BayesNet 150 4-grams 92.5 92.7 97.2 96.1 94.6
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kNN 150 5-grams 88.2 92.1 93.2 96.8 92.6
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done by iteratively traversing the text using slid-
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stead of libsvm because the vector contains prob
values for each class (segment typ), not only a
predicted class (e.g., conforming to [0,0,1,0] if the
third class was predicted)

basic approach...

3.2 Calculating the Final Segmentation

4 Evaluation

metrics eval basic approach...

textkernel...

classifier ds method cmp job offer req avg
LibSVM 100 1s-2s-stop 94.8 94.7 97.0 97.9 96.1
BayesNet 150 4-grams 92.5 92.7 97.2 96.1 94.6
Naive Bayes 75 1s-3s-stop 93.0 92.1 95.5 96.4 94.2
kNN 150 5-grams 88.2 92.1 93.2 96.8 92.6
LibLinear 150 4-grams 88.0 93.1 96.3 90.8 92.0
PART 100 1s-3s-stop 81.0 84.8 90.4 89.4 86.4
J48 100 1s-3s-stop 79.1 82.2 91.2 89.6 85.5

Table 2: Best Accuracies of Machine-Learned Models in Percent.

feature acc.
1s-2s-stop 96.1
1s-nostop 95.9
1s-3s-nostop 95.9
1s-3s-stop 95.9
1s-stop 95.8
1s-2s-nostop 95.6
4-grams 95.1
5-grams 94.4

feature acc.
3-grams 94.4
6-grams 94.0
2s-stop 92.6
2s-nostop 83.2
3s-stop 77.1
3s-nostop 57.5
1s-2s-3s-stop ?
1s-2s-3s-nostop ?

Table 3: Best Accuracy By Feature in Percent.

discussed classification cannot be used as is, be-
cause the borders of the different segments are not
known. That is, a classifier can only predict the
segment type with high accuracy if the complete
and correctly separated segment is given as input.
To tackle this limitation, an algorithm has been de-
veloped that is based on the constrained classifier,
but allows to estimate segment borders. In the first
step, a model-based probability is calculated for
each text position to belong to each segment type.
Subsequently, these values serve as input for the
final ad segmentation, basically by locating prob-
ability peaks and applying thresholds to widen a
segment.

3.1 Applying the Model

Given a full text job ad, the task of the first step
is to estimate a probability for each segment type
and text position, i.e., for each token. This is
done by iteratively traversing the text using slid-
ing windows, asking the model to predict a vec-
tor [pc, pj , po, pr] for each window. The values
in this vector correspond to the probability for the
window to be of the type company, job, offer and
requirement, respectively. For each token, a list
of such vectors is kept that stores all predictions.
This means, that for all tokens in the currently pre-
dicted window, the list is appended by the current
prediction vector. Finally, after processing all slid-
ing windows, the final probability vector for a to-
ken is computed by calculating the average of all
stored vectors.
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As shown in Section 2.3, machine-learned mod-
els work significantly better than dictionary ap-
proaches for predicting the type of a given seg-
ment. Thus, the former are used as for calculating
the respective probabilities. moreover, bayes in-
stead of libsvm because the vector contains prob
values for each class (segment typ), not only a
predicted class (e.g., conforming to [0,0,1,0] if the
third class was predicted)

basic approach...

3.2 Calculating the Final Segmentation

4 Evaluation

metrics eval basic approach...

textkernel...

classifier ds method cmp job offer req avg
LibSVM 100 1s-2s-stop 94.8 94.7 97.0 97.9 96.1
BayesNet 150 4-grams 92.5 92.7 97.2 96.1 94.6
Naive Bayes 75 1s-3s-stop 93.0 92.1 95.5 96.4 94.2
kNN 150 5-grams 88.2 92.1 93.2 96.8 92.6
LibLinear 150 4-grams 88.0 93.1 96.3 90.8 92.0
PART 100 1s-3s-stop 81.0 84.8 90.4 89.4 86.4
J48 100 1s-3s-stop 79.1 82.2 91.2 89.6 85.5

Table 2: Best Accuracies of Machine-Learned Models in Percent.

feature acc.
1s-2s-stop 96.1
1s-nostop 95.9
1s-3s-nostop 95.9
1s-3s-stop 95.9
1s-stop 95.8
1s-2s-nostop 95.6
4-grams 95.1
5-grams 94.4

feature acc.
3-grams 94.4
6-grams 94.0
2s-stop 92.6
2s-nostop 83.2
3s-stop 77.1
3s-nostop 57.5
1s-2s-3s-stop ?
1s-2s-3s-nostop ?

Table 3: Best Accuracy By Feature in Percent.

discussed classification cannot be used as is, be-
cause the borders of the different segments are not
known. That is, a classifier can only predict the
segment type with high accuracy if the complete
and correctly separated segment is given as input.
To tackle this limitation, an algorithm has been de-
veloped that is based on the constrained classifier,
but allows to estimate segment borders. In the first
step, a model-based probability is calculated for
each text position to belong to each segment type.
Subsequently, these values serve as input for the
final ad segmentation, basically by locating prob-
ability peaks and applying thresholds to widen a
segment.

3.1 Applying the Model

Given a full text job ad, the task of the first step
is to estimate a probability for each segment type
and text position, i.e., for each token. This is
done by iteratively traversing the text using slid-
ing windows, asking the model to predict a vec-
tor [pc, pj , po, pr] for each window. The values
in this vector correspond to the probability for the
window to be of the type company, job, offer and
requirement, respectively. For each token, a list
of such vectors is kept that stores all predictions.
This means, that for all tokens in the currently pre-
dicted window, the list is appended by the current
prediction vector. Finally, after processing all slid-
ing windows, the final probability vector for a to-
ken is computed by calculating the average of all
stored vectors.
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As shown in Section 2.3, machine-learned mod-
els work significantly better than dictionary ap-
proaches for predicting the type of a given seg-
ment. Thus, the former are used as for calculating
the respective probabilities. moreover, bayes in-
stead of libsvm because the vector contains prob
values for each class (segment typ), not only a
predicted class (e.g., conforming to [0,0,1,0] if the
third class was predicted)

basic approach...

3.2 Calculating the Final Segmentation

4 Evaluation

metrics eval basic approach...

textkernel...

classifier ds method cmp job offer req avg
LibSVM 100 1s-2s-stop 94.8 94.7 97.0 97.9 96.1
BayesNet 150 4-grams 92.5 92.7 97.2 96.1 94.6
Naive Bayes 75 1s-3s-stop 93.0 92.1 95.5 96.4 94.2
kNN 150 5-grams 88.2 92.1 93.2 96.8 92.6
LibLinear 150 4-grams 88.0 93.1 96.3 90.8 92.0
PART 100 1s-3s-stop 81.0 84.8 90.4 89.4 86.4
J48 100 1s-3s-stop 79.1 82.2 91.2 89.6 85.5

Table 2: Best Accuracies of Machine-Learned Models in Percent.

feature acc.
1s-2s-stop 96.1
1s-nostop 95.9
1s-3s-nostop 95.9
1s-3s-stop 95.9
1s-stop 95.8
1s-2s-nostop 95.6
4-grams 95.1
5-grams 94.4

feature acc.
3-grams 94.4
6-grams 94.0
2s-stop 92.6
2s-nostop 83.2
3s-stop 77.1
3s-nostop 57.5
1s-2s-3s-stop ?
1s-2s-3s-nostop ?

Table 3: Best Accuracy By Feature in Percent.

discussed classification cannot be used as is, be-
cause the borders of the different segments are not
known. That is, a classifier can only predict the
segment type with high accuracy if the complete
and correctly separated segment is given as input.
To tackle this limitation, an algorithm has been de-
veloped that is based on the constrained classifier,
but allows to estimate segment borders. In the first
step, a model-based probability is calculated for
each text position to belong to each segment type.
Subsequently, these values serve as input for the
final ad segmentation, basically by locating prob-
ability peaks and applying thresholds to widen a
segment.

3.1 Applying the Model

Given a full text job ad, the task of the first step
is to estimate a probability for each segment type
and text position, i.e., for each token. This is
done by iteratively traversing the text using slid-
ing windows, asking the model to predict a vec-
tor [pc, pj , po, pr] for each window. The values
in this vector correspond to the probability for the
window to be of the type company, job, offer and
requirement, respectively. For each token, a list
of such vectors is kept that stores all predictions.
This means, that for all tokens in the currently pre-
dicted window, the list is appended by the current
prediction vector. Finally, after processing all slid-
ing windows, the final probability vector for a to-
ken is computed by calculating the average of all
stored vectors.
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As shown in Section 2.3, machine-learned mod-
els work significantly better than dictionary ap-
proaches for predicting the type of a given seg-
ment. Thus, the former are used as for calculating
the respective probabilities. moreover, bayes in-
stead of libsvm because the vector contains prob
values for each class (segment typ), not only a
predicted class (e.g., conforming to [0,0,1,0] if the
third class was predicted)

basic approach...

3.2 Calculating the Final Segmentation

4 Evaluation

metrics eval basic approach...

textkernel...

classifier ds method cmp job offer req avg
LibSVM 100 1s-2s-stop 94.8 94.7 97.0 97.9 96.1
BayesNet 150 4-grams 92.5 92.7 97.2 96.1 94.6
Naive Bayes 75 1s-3s-stop 93.0 92.1 95.5 96.4 94.2
kNN 150 5-grams 88.2 92.1 93.2 96.8 92.6
LibLinear 150 4-grams 88.0 93.1 96.3 90.8 92.0
PART 100 1s-3s-stop 81.0 84.8 90.4 89.4 86.4
J48 100 1s-3s-stop 79.1 82.2 91.2 89.6 85.5

Table 2: Best Accuracies of Machine-Learned Models in Percent.

feature acc.
1s-2s-stop 96.1
1s-nostop 95.9
1s-3s-nostop 95.9
1s-3s-stop 95.9
1s-stop 95.8
1s-2s-nostop 95.6
4-grams 95.1
5-grams 94.4

feature acc.
3-grams 94.4
6-grams 94.0
2s-stop 92.6
2s-nostop 83.2
3s-stop 77.1
3s-nostop 57.5
1s-2s-3s-stop ?
1s-2s-3s-nostop ?

Table 3: Best Accuracy By Feature in Percent.

discussed classification cannot be used as is, be-
cause the borders of the different segments are not
known. That is, a classifier can only predict the
segment type with high accuracy if the complete
and correctly separated segment is given as input.
To tackle this limitation, an algorithm has been de-
veloped that is based on the constrained classifier,
but allows to estimate segment borders. In the first
step, a model-based probability is calculated for
each text position to belong to each segment type.
Subsequently, these values serve as input for the
final ad segmentation, basically by locating prob-
ability peaks and applying thresholds to widen a
segment.

3.1 Applying the Model

Given a full text job ad, the task of the first step
is to estimate a probability for each segment type
and text position, i.e., for each token. This is
done by iteratively traversing the text using slid-
ing windows, asking the model to predict a vec-
tor [pc, pj , po, pr] for each window. The values
in this vector correspond to the probability for the
window to be of the type company, job, offer and
requirement, respectively. For each token, a list
of such vectors is kept that stores all predictions.
This means, that for all tokens in the currently pre-
dicted window, the list is appended by the current
prediction vector. Finally, after processing all slid-
ing windows, the final probability vector for a to-
ken is computed by calculating the average of all
stored vectors.
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As shown in Section 2.3, machine-learned mod-
els work significantly better than dictionary ap-
proaches for predicting the type of a given seg-
ment. Thus, the former are used as for calculating
the respective probabilities. moreover, bayes in-
stead of libsvm because the vector contains prob
values for each class (segment typ), not only a
predicted class (e.g., conforming to [0,0,1,0] if the
third class was predicted)

basic approach...

3.2 Calculating the Final Segmentation

4 Evaluation

metrics eval basic approach...

textkernel...

classifier ds method cmp job offer req avg
LibSVM 100 1s-2s-stop 94.8 94.7 97.0 97.9 96.1
BayesNet 150 4-grams 92.5 92.7 97.2 96.1 94.6
Naive Bayes 75 1s-3s-stop 93.0 92.1 95.5 96.4 94.2
kNN 150 5-grams 88.2 92.1 93.2 96.8 92.6
LibLinear 150 4-grams 88.0 93.1 96.3 90.8 92.0
PART 100 1s-3s-stop 81.0 84.8 90.4 89.4 86.4
J48 100 1s-3s-stop 79.1 82.2 91.2 89.6 85.5

Table 2: Best Accuracies of Machine-Learned Models in Percent.

feature acc.
1s-2s-stop 96.1
1s-nostop 95.9
1s-3s-nostop 95.9
1s-3s-stop 95.9
1s-stop 95.8
1s-2s-nostop 95.6
4-grams 95.1
5-grams 94.4

feature acc.
3-grams 94.4
6-grams 94.0
2s-stop 92.6
2s-nostop 83.2
3s-stop 77.1
3s-nostop 57.5
1s-2s-3s-stop ?
1s-2s-3s-nostop ?

Table 3: Best Accuracy By Feature in Percent.

discussed classification cannot be used as is, be-
cause the borders of the different segments are not
known. That is, a classifier can only predict the
segment type with high accuracy if the complete
and correctly separated segment is given as input.
To tackle this limitation, an algorithm has been de-
veloped that is based on the constrained classifier,
but allows to estimate segment borders. In the first
step, a model-based probability is calculated for
each text position to belong to each segment type.
Subsequently, these values serve as input for the
final ad segmentation, basically by locating prob-
ability peaks and applying thresholds to widen a
segment.

3.1 Applying the Model

Given a full text job ad, the task of the first step
is to estimate a probability for each segment type
and text position, i.e., for each token. This is
done by iteratively traversing the text using slid-
ing windows, asking the model to predict a vec-
tor [pc, pj , po, pr] for each window. The values
in this vector correspond to the probability for the
window to be of the type company, job, offer and
requirement, respectively. For each token, a list
of such vectors is kept that stores all predictions.
This means, that for all tokens in the currently pre-
dicted window, the list is appended by the current
prediction vector. Finally, after processing all slid-
ing windows, the final probability vector for a to-
ken is computed by calculating the average of all
stored vectors.
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As shown in Section 2.3, machine-learned mod-
els work significantly better than dictionary ap-
proaches for predicting the type of a given seg-
ment. Thus, the former are used as for calculating
the respective probabilities. moreover, bayes in-
stead of libsvm because the vector contains prob
values for each class (segment typ), not only a
predicted class (e.g., conforming to [0,0,1,0] if the
third class was predicted)

basic approach...

3.2 Calculating the Final Segmentation

4 Evaluation

metrics eval basic approach...

textkernel...

classifier ds method cmp job offer req avg
LibSVM 100 1s-2s-stop 94.8 94.7 97.0 97.9 96.1
BayesNet 150 4-grams 92.5 92.7 97.2 96.1 94.6
Naive Bayes 75 1s-3s-stop 93.0 92.1 95.5 96.4 94.2
kNN 150 5-grams 88.2 92.1 93.2 96.8 92.6
LibLinear 150 4-grams 88.0 93.1 96.3 90.8 92.0
PART 100 1s-3s-stop 81.0 84.8 90.4 89.4 86.4
J48 100 1s-3s-stop 79.1 82.2 91.2 89.6 85.5

Table 2: Best Accuracies of Machine-Learned Models in Percent.

feature acc.
1s-2s-stop 96.1
1s-nostop 95.9
1s-3s-nostop 95.9
1s-3s-stop 95.9
1s-stop 95.8
1s-2s-nostop 95.6
4-grams 95.1
5-grams 94.4

feature acc.
3-grams 94.4
6-grams 94.0
2s-stop 92.6
2s-nostop 83.2
3s-stop 77.1
3s-nostop 57.5
1s-2s-3s-stop ?
1s-2s-3s-nostop ?

Table 3: Best Accuracy By Feature in Percent.

discussed classification cannot be used as is, be-
cause the borders of the different segments are not
known. That is, a classifier can only predict the
segment type with high accuracy if the complete
and correctly separated segment is given as input.
To tackle this limitation, an algorithm has been de-
veloped that is based on the constrained classifier,
but allows to estimate segment borders. In the first
step, a model-based probability is calculated for
each text position to belong to each segment type.
Subsequently, these values serve as input for the
final ad segmentation, basically by locating prob-
ability peaks and applying thresholds to widen a
segment.

3.1 Applying the Model

Given a full text job ad, the task of the first step
is to estimate a probability for each segment type
and text position, i.e., for each token. This is
done by iteratively traversing the text using slid-
ing windows, asking the model to predict a vec-
tor [pc, pj , po, pr] for each window. The values
in this vector correspond to the probability for the
window to be of the type company, job, offer and
requirement, respectively. For each token, a list
of such vectors is kept that stores all predictions.
This means, that for all tokens in the currently pre-
dicted window, the list is appended by the current
prediction vector. Finally, after processing all slid-
ing windows, the final probability vector for a to-
ken is computed by calculating the average of all
stored vectors.
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As shown in Section 2.3, machine-learned mod-
els work significantly better than dictionary ap-
proaches for predicting the type of a given seg-
ment. Thus, the former are used as for calculating
the respective probabilities. moreover, bayes in-
stead of libsvm because the vector contains prob
values for each class (segment typ), not only a
predicted class (e.g., conforming to [0,0,1,0] if the
third class was predicted)

basic approach...

3.2 Calculating the Final Segmentation

4 Evaluation

metrics eval basic approach...

textkernel...

classifier ds method cmp job offer req avg
LibSVM 100 1s-2s-stop 94.8 94.7 97.0 97.9 96.1
BayesNet 150 4-grams 92.5 92.7 97.2 96.1 94.6
Naive Bayes 75 1s-3s-stop 93.0 92.1 95.5 96.4 94.2
kNN 150 5-grams 88.2 92.1 93.2 96.8 92.6
LibLinear 150 4-grams 88.0 93.1 96.3 90.8 92.0
PART 100 1s-3s-stop 81.0 84.8 90.4 89.4 86.4
J48 100 1s-3s-stop 79.1 82.2 91.2 89.6 85.5

Table 2: Best Accuracies of Machine-Learned Models in Percent.

feature acc.
1s-2s-stop 96.1
1s-nostop 95.9
1s-3s-nostop 95.9
1s-3s-stop 95.9
1s-stop 95.8
1s-2s-nostop 95.6
4-grams 95.1
5-grams 94.4

feature acc.
3-grams 94.4
6-grams 94.0
2s-stop 92.6
2s-nostop 83.2
3s-stop 77.1
3s-nostop 57.5
1s-2s-3s-stop ?
1s-2s-3s-nostop ?

Table 3: Best Accuracy By Feature in Percent.

discussed classification cannot be used as is, be-
cause the borders of the different segments are not
known. That is, a classifier can only predict the
segment type with high accuracy if the complete
and correctly separated segment is given as input.
To tackle this limitation, an algorithm has been de-
veloped that is based on the constrained classifier,
but allows to estimate segment borders. In the first
step, a model-based probability is calculated for
each text position to belong to each segment type.
Subsequently, these values serve as input for the
final ad segmentation, basically by locating prob-
ability peaks and applying thresholds to widen a
segment.

3.1 Applying the Model

Given a full text job ad, the task of the first step
is to estimate a probability for each segment type
and text position, i.e., for each token. This is
done by iteratively traversing the text using slid-
ing windows, asking the model to predict a vec-
tor [pc, pj , po, pr] for each window. The values
in this vector correspond to the probability for the
window to be of the type company, job, offer and
requirement, respectively. For each token, a list
of such vectors is kept that stores all predictions.
This means, that for all tokens in the currently pre-
dicted window, the list is appended by the current
prediction vector. Finally, after processing all slid-
ing windows, the final probability vector for a to-
ken is computed by calculating the average of all
stored vectors.
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As shown in Section 2.3, machine-learned mod-
els work significantly better than dictionary ap-
proaches for predicting the type of a given seg-
ment. Thus, the former are used as for calculating
the respective probabilities. moreover, bayes in-
stead of libsvm because the vector contains prob
values for each class (segment typ), not only a
predicted class (e.g., conforming to [0,0,1,0] if the
third class was predicted)

basic approach...

3.2 Calculating the Final Segmentation

4 Evaluation

metrics eval basic approach...

textkernel...

classifier ds method cmp job offer req avg
LibSVM 100 1s-2s-stop 94.8 94.7 97.0 97.9 96.1
BayesNet 150 4-grams 92.5 92.7 97.2 96.1 94.6
Naive Bayes 75 1s-3s-stop 93.0 92.1 95.5 96.4 94.2
kNN 150 5-grams 88.2 92.1 93.2 96.8 92.6
LibLinear 150 4-grams 88.0 93.1 96.3 90.8 92.0
PART 100 1s-3s-stop 81.0 84.8 90.4 89.4 86.4
J48 100 1s-3s-stop 79.1 82.2 91.2 89.6 85.5

Table 2: Best Accuracies of Machine-Learned Models in Percent.

feature acc.
1s-2s-stop 96.1
1s-nostop 95.9
1s-3s-nostop 95.9
1s-3s-stop 95.9
1s-stop 95.8
1s-2s-nostop 95.6
4-grams 95.1
5-grams 94.4

feature acc.
3-grams 94.4
6-grams 94.0
2s-stop 92.6
2s-nostop 83.2
3s-stop 77.1
3s-nostop 57.5
1s-2s-3s-stop ?
1s-2s-3s-nostop ?

Table 3: Best Accuracy By Feature in Percent.

discussed classification cannot be used as is, be-
cause the borders of the different segments are not
known. That is, a classifier can only predict the
segment type with high accuracy if the complete
and correctly separated segment is given as input.
To tackle this limitation, an algorithm has been de-
veloped that is based on the constrained classifier,
but allows to estimate segment borders. In the first
step, a model-based probability is calculated for
each text position to belong to each segment type.
Subsequently, these values serve as input for the
final ad segmentation, basically by locating prob-
ability peaks and applying thresholds to widen a
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3.1 Applying the Model

Given a full text job ad, the task of the first step
is to estimate a probability for each segment type
and text position, i.e., for each token. This is
done by iteratively traversing the text using slid-
ing windows, asking the model to predict a vec-
tor [pc, pj , po, pr] for each window. The values
in this vector correspond to the probability for the
window to be of the type company, job, offer and
requirement, respectively. For each token, a list
of such vectors is kept that stores all predictions.
This means, that for all tokens in the currently pre-
dicted window, the list is appended by the current
prediction vector. Finally, after processing all slid-
ing windows, the final probability vector for a to-
ken is computed by calculating the average of all
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As shown in Section 2.3, machine-learned mod-
els work significantly better than dictionary ap-
proaches for predicting the type of a given seg-
ment. Thus, the former are used as for calculating
the respective probabilities. moreover, bayes in-
stead of libsvm because the vector contains prob
values for each class (segment typ), not only a
predicted class (e.g., conforming to [0,0,1,0] if the
third class was predicted)
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PART 100 1s-3s-stop 81.0 84.8 90.4 89.4 86.4
J48 100 1s-3s-stop 79.1 82.2 91.2 89.6 85.5
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1s-2s-3s-stop ?
1s-2s-3s-nostop ?
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proaches for predicting the type of a given seg-
ment. Thus, the former are used as for calculating
the respective probabilities. moreover, bayes in-
stead of libsvm because the vector contains prob
values for each class (segment typ), not only a
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Fig. 1: Example of Computing Probability Vectors for the Categories Company
Description (C), Job Description (J), Offer (O) and Requirements (R) .

not all classifiers deliver an estimation for each class (segment type) but only the
predicted class (e.g., LibSVM would only produce [0, 0, 1, 0], whereas BayesNet
would produce a more informative vector like [.1, .1, .5, .3]), the model function
prob(t) utilizes BayesNet instead of the slightly more accurate LibSVM classifier.

A visual example of the probability calculation for a sample job ad is depicted
in Fig. 2, which shows the probabilities for each token and segment type. The
text document spans on the x-axis from left to right, and the ground truth for
each type is included in colored rectangles. It can be seen that each segment
type is matched by the probability distribution, having peaks in the correct
corresponding segment.5

4.2 Calculating the Final Segmentation

On the basis of the probability vectors for each token and segment type, the aim
of the last step is to compute the final segmentation. As can be seen visually,
probabilities like in Fig. 2 already match their corresponding segment type, i.e.,
having their peaks within the correct frame. To determine the whole fragments
algorithmically, the basic idea is to use thresholds that widen a peak to the left
and the right, respectively, until the probability falls below the thresholds. Ac-
cording to Algorithm 2, the procedure is as follows: (1.) Out of the unattributed
segment types, choose the one with the highest peak. (2.) Starting from the peak,
go to the left and attribute every token to the chosen type, until the threshold
is reached or the token is already attributed to another type. (3.) Starting from
the peak, do the same to the right.

During the execution, it may happen that peaks for a segment type appear
within an already attributed segment. In this case, this segment type has no
attribution, which also reflects the possibility that a job ad may not contain a
certain segment type. In a similar way, segment types have no final attribution

5 What can be observed in addition is that not all tokens correspond to a segment
type, i.e., the text between company and job description and at the end of the ad is
general and thus not attributed to a specific type.
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Fig. 2: Example of Segment Type Probabilities For a Sample Job Ad.

if an unattributed peak is found, but left and right positions are already below
the given thresholds.

Algorithm 1 Probability Vector Cal-
culation

input:
T list of tokens
wl, ws window length, window step
prob(t) computes the probability vector

for the tokens t
output:

P list of average probability vectors

1: for i from 1 to length(T ) do vi ← []
2: end for

3: for i from 1 step ws to length(T ) do
4: t = [Ti, ..., Ti+wl

]

5: [pC , pJ , pO, pR]← prob(t)
6: for j from i to i+ wl do
7: append [pC , pJ , pO, pR] to vj
8: end for
9: end for

10: for i from 1 to length(T ) do
11: aC ← average of all pC in vj
12: aJ ← average of all pJ in vj
13: aO ← average of all pO in vj
14: aR ← average of all pR in vj
15: Pi ← [aC , aJ , aO, aR]
16: end for

Algorithm 2 Final Segmentation

input:
Pt token probabilities for type t
δl, δr left and right thresholds
maxP (T ) returns the segment type

with the highest peak
output:

S segment type attribution
per token

1: for i from 1 to length(P ) do Si ← unknown
2: end for
3: types← {C, J,O,R}

4: while |types| > 0 do
5: t← maxP (types)
6: p← index of peak within Pt, i← p
7: while Pti ≥ δl ∧ Si = unknown do
8: Si ← t, i← i− 1
9: end while
10: i← p+ 1
11: while Pti ≥ δr ∧ Si = unknown do
12: Si ← t, i← i+ 1
13: end while
14: types← types− {t}
15: end while

5 Evaluation

The presented approach has been evaluated using the remainder of the data
set described in Section 3.3, i.e., using 600 manually tagged Austrian job ads.
According to the input of the algorithms, the following parameter ranges have



segments overall
wl ws δl δr F(C) F(J) F(O) F(R) recall prec F winDiff winP winR winF
25 1 0.65 0.35 65.7 73.8 54.0 71.5 65.2 70.2 67.6 35.0 52.8 53.9 53.3
15 1 0.6 0.3 62.7 75.8 46.6 67.5 62.2 70.2 66.0 35.0 50.4 50.7 50.5
50 1 0.65 0.35 67.2 61.6 62.7 70.1 70.1 61.8 65.7 37.1 50.8 47.0 48.8
75 1 0.65 0.35 66.0 56.3 64.3 65.6 70.6 57.1 63.1 38.4 48.7 43.4 45.9
CJRO-BASELINE 62.1 56.1 30.5 41.0 61.7 41.6 49.1 44.2 39.4 19.7 26.1
RND-BASELINE 25.3 21.9 21.0 22.4 29.6 20.0 23.4 44.2 39.4 19.7 26.1

Table 3: Evaluation Results of the Basic Segmentation Algorithm.

been evaluated: window length in tokens wl = {15, 25, 50, 75}, window step in
tokens ws = {1, 2, ..., 10}, left and right thresholds δl = δr = {0.3, 0.4, ..., 0.8}.
Typically, studies on job ads focus on analyzing the appearances of individual
tokens within different segment types6 rather than requiring exact border posi-
tions (e.g., [21, 2]). Therefore, recall, precision and F1-score have been used as
the main metrics, which are calculated based on the comparison between the
correct tokens of a segment and the predicted tokens7. With this method, the
exact locations of segment borders are only implicitly evaluated, as only tokens
- regardless of their text position - are taken into account. To also get evaluation
results with respect to border positions, the commonly used text segmentation
metric WindowDiff [23] as well as its slightly altered variant WinPR [27] have
been utilized in addition. WindowDiff yields a normalized value between 0 and
1, where 0 indicates a perfect result, whereas WinPR computes standard recall
and precision values for computed segmentations. Note that WindowDiff as well
as WinPR only measure the accuracy of border positions and do not reflect the
correct attribution of segments.

To put the results in perspective, two baselines have been computed: (i) the
RND-BASELINE simply divides the job ad into four equally long segments and
assigns the respective categories in a random order, and (ii) CJRO-BASELINE
also divides the text equally into four segments, but always uses the most promi-
nent category order for attribution, which is: company description – job descrip-
tion – requirements – offer.

Table 3 shows the best results per window length. Using a length of 25, i.e., 25
tokens per window, a token-based F-score of 67% could be gained, significantly
outperforming the baselines. The segmentation-based F-score of WinPR is at
53% only, which indicates that the accuracy of finding exact border positions is
substantially worse than determining relevant tokens within segments.

6 Improvements

Based on the previous results from Section 5, several techniques have been ap-
plied in order to further improve the accuracy of the approach.

6 e.g., if ’abroad’ appears within the offer and/or requirement segment
7 thereby, if a segment type does not exist in the job ad but at least one token has

been predicted for it, the recall/precision is set to 0, and also vice versa.



1. An intrinsic characteristic of job ads is that bullet lists are used frequently,
e.g., to express tasks or required skills. Moreover, it seems reasonable that
segment types do not switch within bullet lists8. Therefore the algorithm
is extended to be able to also detect bullet lists using regular expressions.
If a bullet list is detected during the spanning of segments to the left and
right from the probability peak, the algorithm steps over the whole bullet
list and includes it in the current segment. By doing so, it is ensured that
bullet lists are never split, regardless if the probability is below the left or
right threshold or not.

2. When manually inspecting job ads, it can be observed that individual seg-
ment types often start with similar phrases. For example, the description of a
company may start with ’About us:’, ’Who we are:’ or ’[COMPANY NAME]
is a ...’. In order to detect such typical start sequences, additional dictionar-
ies have been created using the training data, which store all stemmed token
sequences of segment beginnings. If a newline character is found within the
first three tokens, only this line is used, otherwise the first three tokens are
used. Having computed a dictionary for every segment type, the segmenta-
tion algorithm from Section 4.2 is then altered to utilize segment beginnings.
This means, that before searching for the probability peak within a segment
type, it is first assessed whether a typical start sequence could be found.
If yes, the matching position is used as the beginning of the segment, from
where the algorithm spans now only to the right (using δr) and not to the
left. To decide if a start position is found, common regular expressions on
stems are used which match exactly, i.e., with no tolerance. On the other
hand, if also the company name is involved, the extracted name of the offer-
ing company given by the data set is utilized. Because the extracted name
often does not correspond exactly to the name written in the job ad, fuzzy
string matching is applied9.

Both previously mentioned modifications have been evaluated and reveal that
both can enhance the performance when applied individually10. By finally com-
bining both improvement methods, an accuracy of 77% could be gained, as can
be seen in Table 4. To compare the performance to existing segmentation ap-
proaches that do not only draw borders but are also capable of assigning classes
to segments, a conditional random field (CRF) with standard parameter con-
figuration has been trained. It was then utilized to label every token with one
of the four categories, plus an artificial “other” label for tokens belonging to no
category. It can be seen that the presented algorithmic approach outperforms the
CRF-baseline11. Note that while in principle it would be possible to incorporate
at least some of the algorithmic improvements also to the CRF-baseline, this
task is not trivial as the CRF provides no probabilities but only labels tokens.

8 although there are rare cases where this is the case
9 using the Jaro-Winkler distance [33, 9] with a threshold of 0.85

10 Due to space constraints, the individual results are omited.
11 Note that the segmentation metrics winDiff and winPR are not applicable for the

CRF-baseline, as tokens are only labeled and no actual segmentation is performed.



segments overall
wl ws δl δr F(C) F(J) F(O) F(R) recall prec F winDiff winP winR winF
50 1 0.5 0.35 69.9 79.0 72.8 86.6 79.6 75.3 77.4 28.5 63.9 57.4 60.5
75 1 0.55 0.45 69.4 78.6 72.9 88.1 79.4 75.6 77.4 29.2 62.6 57.2 59.8
25 1 0.4 0.35 69.3 73.5 68.3 73.6 70.2 74.1 72.1 29.9 61.9 59.4 60.6
CRF-BASELINE 64.1 71.0 73.1 72.1 71.9 71.6 71.5 – – – –
15 1 0.4 0.3 67.8 76.5 60.3 69.7 67.3 74.0 70.5 30.2 61.0 56.3 58.5

Table 4: Evaluation Results Including Bullet List and Start Sequence Detection.

Therefore, a different and adapted approach would have to be developed which
is not addressed in this paper and left for future work.

In a final set of experiments using the hybrid approach, it has additionally
been evaluated whether introducing a minimum segment length lmin increases
the overall accuracy. By defining lmin = 28 tokens, the overall F-score could be
improved slightly to 78%. On the other side, an experiment was conducted that
allowed a segment to be distributed over several positions within the document12.
This was done by spanning a segment not only from one probability peak, but
from two or three peaks if an individual predefined threshold was exceeded for
the latter. Optimizing this threshold it has been found that the overall accuracy
could not be improved, but instead is reduced by 10%. In a final experiment,
it has been evaluated whether allowing different left and right thresholds for
different segment types influences the segmentation accuracy, but the results
indicated that this is not the case.

7 Conclusion and Future Work

In this paper, we presented an approach to automatically segment job ads into
four predefined segment types. Using machine-learning based on extracted tex-
tual features, iterative algorithms operate to detect segments. Comprehensive
evaluations including several optimizations using domain specific characteris-
tics reveal that the segment types can be identified with an accuracy of 78%
in average, outperforming an out-of-the-box Conditional Random Field imple-
mentation as a baseline. The proposed method may also be applied to other
languages than German and evaluated, how the accuracy changes with different
data sets. Moreover, it should be evaluated whether training a model which in-
cludes not only the predefined segment types, but also a specific general type
(’other’ ) can enhance the accuracy. Finally, the classifier that holds the segment
type model should be tuned for an application in real-life business scenarios.

12 which is the case for the offer segment, for example, if the salary is stated within
the job description, while the other “offer” is formulated at a different position
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