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Abstract. In the last decade, machine translation has become a popular means
to deal with multilingual digital content. By providing higher quality translations,
obfuscating the source language of a text becomes more attractive. In this paper,
we analyze the ability to detect the source language from the translated output of
two widely used commercial machine translation systems by utilizing machine-
learning algorithms with basic textual features like n-grams. Evaluations show
that the source language can be reconstructed with high accuracy for documents
that contain a sufficient amount of translated text. In addition, we analyze how
the document size influences the performance of the prediction, as well as how
limiting the set of possible source languages improves the classification accuracy.

1 Introduction

The amount of textual data being shared through various channels over the Internet is
growing constantly. Considering the fact that this data is transferred across cultural as
well as political borders, machine-translation is an often used means in case the source
or target language is understood insufficiently. On the other hand, the growing quality
of publicly available services from, e.g., Google or Microsoft, can also be used to ob-
fuscate the source language, and thus the geographical origin. While there exist many
approaches in the field of stylometry to identify the author of documents [17] (which
is also frequently used in digital forensics [13]), to determine the native language of a
person based on samples written in a non-native language (Native Language Identifica-
tion, e.g., [8]), or to detect the translation tool of a machine-translated text [1] it has not
been investigated whether similar techniques can be utilized to predict the source lan-
guage of machine-translated text with satisfying accuracy. Algorithms which are able to
reconstruct the original language could be utilized for, e.g., detecting plagiarism: once
a part of a document is confirmed to be machine-translated and the original language is
known, further investigations can focus on that languages. Regarding forensics, a use
case could include determining the native language of a threat that has been automati-
cally translated, e.g., to restrict the geographical origin and consequently the amount of
possible authors.

We analyze the prediction performance of commonly used stylometric features such
as n-grams – which are known to work well for various text classfication problems
[8, 12] – regarding the detection of the source language from machine-translated text.
Adhering to the fact that most of online text is shared in English [14], we restrict the
target language to be English as well for this study.



Analogous to the field of authorship attribution where it has been shown that an
increasing amount of possible authors decreases the prediction performance, we addi-
tionally analyze the influence of the number of possible source languages on the quality
of the prediction. Finally, we determine the amount of text that is required to achieve a
specific accuracy for predicting the source language.

Concretely, we answer two main research questions (RQ) in this paper:

RQ1: Given a document, can it be detected whether it was machine-translated, and
if yes, how accurate can the source language be determined?
RQ2: How do different feature sets, varying amounts of possible source languages
and document lengths influence the prediction accuracy?

We find that using traditional features, the original source language of a translated
text can be predicted with a very high accuracy. Additionally, we show that this predic-
tion is possible with even very small amounts of text for many possible languages.

2 Related Work

Previous work in authorship attribution [5, 16] has shown that the use of automatic
translation techniques actually adds information to a text document since the translation
itself adds details specific to the methods used. We assume this fact is still valid although
the engine used by the translation services has changed from statistical methods to
neural networks1,2.

A field of research closely related to the problem presented in this paper is Native
Language Identification (NLI), which aims to find the native language of authors given
only documents in a foreign language. Features used for this classification task range
from traditional n-grams [11, 2] over string kernels [7] to detailed stylistic analyses of
the words and grammar that was used by the authors [4, 3, 18, 19].

In an approach more closely related to the problem addressed by this paper, Kop-
pel et al. determine the source language of human-translated documents by analyzing
various types of errors introduced by non-native authors [10].

The effect of automatic machine translation on text has been analyzed with focus on
different aspects. Detecting the tools which have been used to translate a text has been
shown to be already possible for very small amounts of text [1]. Caliskan and Greenstadt
show that repeated translation of text does not obfuscate an author’s individual writing
style [5]. Instead, the translation itself adds even more information to the text, making
it possible to determine which translation engine was used. In their research, a text that
has been translated two and three times is shown to still contain enough information to
determine the authorship with an accuracy of over 90%. Similarly, it has been shown
that the effectiveness of using machine-translation to obfuscate the original text and
thus reduce the accuracy of authorship verification is limited [15].

1 https://www.blog.google/products/translate/found-translation-more-accurate-fluent-
sentences-google-translate/

2 https://blogs.msdn.microsoft.com/translation/2016/11/15/microsoft-translator-launching-
neural-network-based-translations-for-all-its-speech-languages/



3 Methodology

At a glance, we utilize textual features commonly used in stylometry to quantify the
characteristics of translated English text originating from a specific source language.
These features are then used to train state-of-the-art machine-learning classifiers, which
are finally used to predict the source language.

3.1 Dataset

We used two different sources to construct a representative dataset containing German
(de), English (en), Spanish (es), French (fr), Italian (it), Japanese (ja), Korean (ko),
Dutch (nl), Turkish (tr) and Chinese (zh) text: firstly, the Leipzig Corpus Collection
(further called lcc) [6] contains random sentences from news articles, web pages and
Wikipedia articles. Secondly, random Wikipedia articles were selected for each of the
languages mentioned above, which will collectively be referred to as wiki.

For each language from both lcc and wiki, 5,000 sentences were chosen randomly
and translated to English using the services of Google3 and Microsoft4. Subsequently,
9 of the 10 languages are translated, whereas the original English sentences are not
translated. The dataset generation process is displayed on Fig. 1, where in the first
step the sentences from both datasets are combined, yielding 10,000 sentences for each
language.

Thereby, the translation itself was performed sentence-wise. Both translation en-
gines feature an automatic detection of the source language, however, since this in-
formation was known it was provided to them. This implicitly enables our prediction
model to detect whether a document has been machine-translated at all. For all further
investigations, the texts from the two services were kept separate, i.e., the computed
models were tested on documents coming from the same translation service that was
also used for training. While the performance of cross-translation-service evaluations
might be of interest at a first glance, this was omitted since it has already been shown
that detecting the tool which was used to translate a text can be detected easily [1], i.e.,
in a realistic scenario one would probably use such an approach as a preliminary step
to choose the correct model.

Document Sampling To answer parts of RQ2, i.e., the influence of text length on the
source language prediction quality, documents of various text sizes are required. To
construct expressive documents, the translated sentences were combined randomly to
create documents of various sizes, i.e., data sets consisting of short (S), medium (M),
long (L) and very long (XL) documents, respectively5. The outcome of this step of the
workflow is depicted in the bottom part of Fig. 1, and details about the resulting datasets
are listed in Table 1.

3 https://translate.google.com
4 https://www.microsoft.com/en-us/translator/
5 The sampling on a random basis was required since the lcc dataset only contains random

sentences, rather than cohesive documents.



en de . . . nl zh

. . .5k wiki

+
. . .5k LCC

. . .10k mixed

Google Microsoft

en = en (untranslated)
es→ en
. . .
nl→ en
zh→ en

en = en (untranslated)
es→ en
. . .
nl→ en
zh→ en

XL. . .S XL. . .S

Fig. 1. Dataset Generation Workflow

The choice for the document sizes is thereby loosely based on typical sizes of on-
line texts according to social media statistics6. All documents created are unique with
respect to their sentences contained, i.e., one sentence can only be part of one document
per size class. This limitation causes the data set with the longest documents (XL) to
contain less documents than the other datasets, for which a maximum of 1,000 docu-
ments were created.

Table 1. Data Sets with Varying Document Lengths

length no. of words no. of docs

short (S) 5–50 1,000
medium (M) 51–200 1,000
long (L) 201–1,000 1,000
xlong (XL) ≥ 1,001 312 (on avg)

6 e.g., https://blog.bufferapp.com/optimal-length-social-media



3.2 Features

To distinguish the origin of the translated documents, several text features are used,
which are listed in Table 2. These features were calculated by the Python library scikit-
learn7 as well as the language processing library spaCy8 for POS tagging. Regarding
the features used, the punctuation occurrence counts the amount of selected punctuation
marks9 in each document. Features 2 and 3 count the occurrences of distinct words, sep-
arated by whitespace, whereby feature 3 disregards all English stop words10. Features
4-23 count the occurrences of n-grams of various lengths of characters and POS-tags,
respectively. The n-gram-features denote the combination of all n-grams ranging from
length 1 to 4. The tf-idf term denotes that the respective measure is normalized using
term frequency-inverse document frequency metric provided by scikit-learn11.

Combinations of features were tested, but provided no additional accuracy over
using single features. This is displayed in Section 4.

Table 2. List of Utilized Features

id feature name

1 punctuation occurrence
2 word occurrence
3 word occurrence, w/o stop words

4-8 character 1, 2, 3, 4, n-grams
9-13 character 1, 2, 3, 4, n-grams w. tf-idf

14-18 POS-tag 1, 2, 3, 4, n-grams
19-23 POS-tag 1, 2, 3, 4, n-grams w. tf-idf

3.3 Classifier

In order to determine the classifier for this task, a preliminary evaluation has been con-
ducted on the S-dataset, using all features described in Table 2 individually. Thereby,
several popular classifiers were tested: Naive Bayes, K Nearest Neighbors (KNN), Sup-
port Vector Machines (SVM) with Linear and RBF Kernels, Random Forest and a Mul-
tilayer Perceptron (MLP). This preliminary step was required due to the infeasibility
of testing all classifiers with all experimental runs described in Section 4. To estimate
the classifier performances, the default parameters given by the scikit-learn library have
been used. The results of this preliminary run are displayed in Table 3. We observe that
the linear SVM outperformed all other classifiers, if only by a small margin. The neural
network (MLP) has a similar performance, at the cost of a much longer runtime. Being

7 http://scikit-learn.org/
8 https://spacy.io/
9 :;.,?!"#$%&()[]{}*+-\/^_‘|~

10 We rely on the list of stop words provided by scikit-learn
11 http://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting



Table 3. Accuracy of Different Classifiers on the Short Data Set. The feature ids correspond to
the features listed in Table 2. The best performing feature (with id=13) corresponds to character
n-grams with tf-idf normalization.

Microsoft Google

classifier score feature id score feature id

Naive Bayes 0.39 12 0.31 12
KNN 0.30 11 0.24 12
SVM (linear) 0.44 13 0.34 13
SVM (RBF) 0.19 14 0.18 14
Random Forest 0.28 3 0.21 3
MLP 0.44 13 0.34 13

in line with other research in this area [9, 10] and adhering to the results of this test, the
linear SVM was used for further experiments.

3.4 Experiment Setup

As argued previously, the texts translated by the two translation services have not been
mixed for all following calculations, i.e., we never test documents translated by Google
on models that have only seen documents translated by Microsoft and vice versa.

To answer both RQs, two separate experiments were conducted: In the first setup,
the influence of the number of possible source languages on the resulting accuracy is
analyzed. At first, a classification process has been performed on the short documents,
including all source languages. Subsequently, each combination of 2, 3 and 4 possible
source languages has been selected, whereby each combination also contains original,
untranslated English documents. The restriction that the combinations must contain the
English documents ensures that each combination also contains a non-translated set of
documents. This way, any difference in classifying translated vs. original text can be
determined as well.

The second experiment subsequently analyzes the influence of the document length
on the classification performance. Here, all possible languages are taken into account,
resulting in a 10-class classification problem.

4 Results

To quantify the individual expressiveness of each feature, we first conducted isolated
evaluations for each feature using the S-dataset. The corresponding results can be found
in Table 4. For readability reasons, only selected features are shown in the figure, with
the best performing feature printed in bold face. Then, the best performing features
were selected, and combinations thereof were tested. Results of these experiments are
displayed in Table 5, which displays the best performing feature set (character n-grams
with tf-idf normalization, i.e., utilizing combined character 1-, 2-, 3- and 4-grams) in-
cluding other well-performing combinations. Comparing these results to the previous



single-feature evaluation of Table 4, it can be seen that combining features (sets) does
not improve the classification performance.

Table 4. Accuracy of all Single Features

feature id 1 2 3 4 5 6 7 8 9 10 11 12
Microsoft 0.21 0.36 0.33 0.25 0.35 0.39 0.39 0.41 0.29 0.36 0.40 0.41
Google 0.15 0.28 0.25 0.21 0.28 0.29 0.30 0.33 0.23 0.29 0.30 0.31

feature id 13 14 15 16 17 18 19 20 21 22 23
Microsoft 0.44 0.20 0.27 0.25 0.22 0.27 0.20 0.27 0.25 0.21 0.24
Google 0.34 0.18 0.24 0.24 0.22 0.26 0.18 0.24 0.23 0.22 0.24

Table 5. Accuracy of Best Feature and Selected Combinations

accuracy

features used Microsoft Google

char-n (tfidf) 0.44 0.34
char-n (tfidf) + POS-n (tfidf) 0.25 0.24
char-n (tfidf) + char-n 0.44 0.34
char-n (tfidf) + char-4 (tfidf) 0.42 0.34
char-n (tfidf) + char-4 0.41 0.30

Table 6. Part of the Confusion Matrix for Short Documents Translated by Google

de en es nl

de 57 24 23 39
en 7 178 4 11
es 28 7 86 17
nl 26 15 26 72

The overall performance on classifying the original language of a machine trans-
lated text is high. Fig. 2 shows the classification performance with a varying amount of
possible source languages. It can be seen that for all text lengths tested, the prediction
is well above the baseline, which represents random guessing out of the possible lan-
guages. In case of only two possible source languages, text translated by Microsoft can
be classified with an accuracy of over 0.85 when having only short documents as input.
The combination of character 1- to 4-grams with tf-idf normalization proves to be the
best suiting feature set for both the Microsoft and Google translations.



As expected and displayed in Figure 3, the quality of the predictions also increases
substantially with the amount of text available. For the XL-dataset, the accuracy of
the classifier reaches values of over 0.99. This result suggests that if the amount of
text translated by an engine is large enough, i.e., more than 1,000 words, its unique
properties can be used to predict the source language nearly perfectly.
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Fig. 2. Varying Number of Possible Languages using short document lengths

Both experiments show that character n-grams with tf-idf normalization achieve the
best performance, regardless of the translation engine used. Another fact that can be
extracted from the results is that the classification performs worse on text translated by
Google rather than by Microsoft. It suggests that Google is currently able to transfer
more complex linguistic structures onto its translation than Microsoft does. Note that
in general all results are based on the technology currently used by the two translation
engines, which may change in the future. While it can be assumed that the prediction
accuracy decreases with improvements of the tools, future work should investigate this
problem in detail.

Table 6 shows an excerpt of the confusion matrix of short documents using the
Google translation service. Due to the origin of the languages it seems intuitive that
some pairs (e.g., es–en) are easier distinguishable than others (e.g., nl–de), which is
also reenforced by our experiments. However and unfortunately, the SVM used for
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the classification provides no information about the relevance of the single character n-
grams features, so we can’t argue which parts of the translated text indicates the original
language at this point. Note that while other classifiers indeed can provide such infor-
mation (e.g., decision trees or naive Bayes), their prediction accuracy is significantly
worse, making statements about the indicators unreliable.

Answering RQ1, the experiments clearly show that it can be determined whether an
English text is machine-translated, and that the source language can be predicted with
high accuracy. Moreover, the prediction quality increases significantly by restricting the
amount of possible source languages as well as by providing longer texts (RQ2).

5 Conclusion and Future Work

In this paper, we have shown that, given an English text, it can be determined if it was
translated by using stylometric features in combination with machine-learning. More-
over, if translation was applied, the source language can be predicted at a high accuracy
for regular length texts, and at a near-perfect accuracy when providing longer text sam-
ples. If the number of possible source languages is low, the prediction is reliable even for
short length documents. Possible extensions of this study include considering more dif-
ferent language classes (e.g., Arabic and African), analyzing other target languages for



the translation or finding optimal parameters for different classifiers (e.g., Neural Net-
works). However, while we showed that source language detection is possible at high
accuracy in general, it remains unclear what the discriminating features (i.e., n-grams)
are for the respective languages. Using different classifiers which contain feature im-
portances could be used to gain an intuitive understanding of the differences of specific
language pairs. Other approaches can include automatic measures like recursive feature
elimination, which was omitted due to a limited timeframe. Different kinds of features,
such as grammar based features, may help to gain further understanding of the transla-
tion systems analyzed, which can subsequenly be leveraged to increase the performance
of the model ever further.
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