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Abstract. Classification is notoriously computing-intensive, especially with 
large datasets. The common (mis)understanding is that cross-validation (CV) 
tests on subsets of the training data are the only recourse for the selection of best 
classifier for given dataset. We have shown in [9] that best classifier can be 
selected on basis of a few prediction factors (related to training volume, number 
of features and feature value distribution) calculated from the dataset. In this 
paper, we report promising results of a series of runs with a number of strong 
classifiers (Support Vector Machine kernels, Decision Tree variants, Naive 
Bayes and also K Nearest Neighbor Classifiers and Neural Networks) with 
randomly generated datasets (gensets). We outline the relative strengths of these 
classifiers in terms of four prediction factors and generalize the findings to 
different types of datasets (word sense disambiguation, gensets and a protein 
recognition dataset). 

1   Introduction 

Classification is the process of automatically resolving the conflicts that occur when 
two or more different things have the same name and are thereby ambiguous to 
machines (e.g. the English noun bank can refer among other things to a financial 
institution or a river embankment). It is a required procedure for machine-learning 
application fields as varied as data mining (e.g. recognition of the protein type), text 
mining and natural language processing (NLP). For instance, word sense 
disambiguation (WSD) is defined as the resolution of ambiguous words into meanings 
or senses). To resolve these 'classification tasks' automatically, training instances 
containing independent observations (instances) of ambiguous classes are gathered (or 
extracted from text in case of WSD). Then from this training data, a training model is 
learned by classifiers, and the model is tested or evaluated against unseen (i.e. test) 
instances. Classification accuracy (number of correctly classified test instances / total 
number of test instances) is the qualitative measure used in this paper for assessing the 
performance of classifiers.    

In the next sections, we describe the investigated datasets, prediction factors and 
classifier differences. Then we present the summary of results from those classifiers at 
those datasets and explain the systematic findings in terms of those prediction factors 
and finally conclude on the importance of the findings.  
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2  Dataset Profiles 

Dataset elements are target classes (e.g. senses of word), training and test instances, 
features and feature values. In classification tasks such as weather prediction (e.g. 
sunny/rain, hail/snow), target class is predicted using either binary (0/1), numerical 
(0..1) or set-based (0,1,n) features as probabilistic pointers to those target classes.  

Table 1. Dataset matrix (fictional values) for 2-grain (2 target classes) task. 

Dataset Instance Feature 1 
(binary) 

Feature 2 
(nominal) 

Feature 3 
(numerical) 

Class 1 Instance 1 0 A 0.1 

 Instance 2 0 A 0.2 

 Instance 3 1 A 0.1 

Class 2 Instance 4 1 B 0.9 

 Instance 5 1 B 0.8 

 Instance 6 1 C 0.7 

Feature bias 1  0.890 -0.212 0.506 
 

Datasets from different fields have been used to define the strengths of classifiers: 

1. Word sense disambiguation (WSD) datasets. Word sense disambiguation is 
typically based on a combination of contextual-statistical methods (e.g. n-grams or 
parts of speech from around target word). 1-grams are single words around target word 
from the whole target word instance, 2-grams are consecutive words in the whole target 
word instance, parts of speech  are POS tags from the local context around target word 
(see Listing 1). 
Listing 1. Parts of speech feature set (pos3) (= parts of speech with one-word window around 
and including target word) for authority.n word in Senseval-4 in ARFF format from Weka [11]. 

@attribute 'R1-WDT' {0,1} 

@attribute 'R1-WP' {0,1} 

@attribute 'senseclass' {1, 3, 4, 5} 

{3 1, 29 1, 43 1, 54 3} % authority.n 18:0@30@wsj02 

{9 1, 22 1, 49 1, 54 1} % authority.n 32:0@0@wsj02 

First two lines show two features (R2-WDT and R2-WP: words with those pos tags one 
word right (R) from target word). Third line lists the target classes ('senseclass'). Last 
lines show two instances where feature values are represented in sparse format (i.e. 

                                                 
1Positive/negative feature biases mean the feature points to class 1 / class 2 respectively as 

estimated by classifiers. 
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only showing 1's meaning the part of speech tag is present in current instance). 
2.  Gensets. To compare performance of classifiers at different datasets, we generated 
random datasets (with both binary features 0/1 or binfeats, and numerical features or 
numfeats). We varied the following relevant factors: 

 number of training instances (train): 40, 60, 80, 100, 150, 200 
 number of target classes (grain): 2, 5, 8, 10, 15, 20 
  number of input features (nrfeat):5, 10, 25, 50, 100, 200 

This constituted a batch of 216 datasets of both numfeat and binfeat type (totalling at 
432 datasets). Example of such dataset follows in Listing 2. 
Listing 2. Genset-binfeat with five features and two target classes (excerpt). 2 

@attribute a8 {false,true} 

@attribute a9 {false,true} 

@attribute class {c0,c1}} 

true, false, false, false, true, c0 

true, true, false, false, false, c0 

3. Protein Recognition. Online SCOP resource 
(http://scop.mrc-lmb.cam.ac.uk/scop/data/scop.b.html) is a protein 
categorization system with 126 numerical features and over a thousand proteins.  
Below is an excerpt (Listing 3). 
Listing 3. Protein dataset (7 target classes as class grain). 

@attribute comp_hyd_one real 

@attribute comp_hyd_two real 

@attribute class {53931, 51349, 48724, 46456, 56572, 56992, 
56835} 

@data 26.1745,...,5.36913,46456 

Shown in this excerpt are two features (comp_hyd_ prefixed), target class (protein) set 
in terms of protein id's in the SCOP system and one instance belonging to protein class 
46456 (most of the 126 feature values largely omitted for reasons of space).  

3   Prediction Factors 

In this section, we define the case factors that predict the best system for word and 
define the properties of some classifiers that help define their respective strengths. 
Prediction factors are sums or averages or distributions of individual instances and 
features in the training set. In a previous article [9], we have already presented two of 
them: P (average number of positive training examples per target class) and N (total 
number of training examples minus P, i.e. number of negative training examples per 
                                                 
2Genset-numfeat datasets are just like binfeats but with fvals 0..1 instead of 0,1. 
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class). Additionally, in recent tests with gensets, we have discovered the following 
factors relevant: 

1. Number of features (nrfeat). While training volume (P+N) and nrfeat already 
distinguish between some classifier pairs (families even), we still could not explain the 
difference of some classifiers different weight functions. We found that of all 
individual factors investigated thus far there exists highest correlation between nfeat 
and best classifier (0.35 in correlation coefficient). Even P and N remained less 
correlated but this can be explained by their codependency and interrelation in 
determining best classifier.  
2. Feature quality (fqual) estimation.  When we investigated the difference between 
different decision trees, we realized that they weight low/middle/high-quality features 
differently (see Classifier differences). Therefore, average fqual of features in the 
dataset has to make a difference in selecting best classifier. We do not here measure 
feature quality explicitly but only note the following difference between the datasets: 
n-grams are typically high in number but relatively low in quality (occurring very few 
times) while genset features converge to equal quality (due to randomness of fval 
assignment). 
3. Feature value (fval) distribution. This factor characterizes the distribution profile 
of feature values: while gensets have equal distribution of fvals from 0 to 1 (i.e. with 
numfeats average fval of each feature converges to 0.5 and with binfeats both 0 and 1 
fvals are almost equally probable). N-grams in WSD in turn are focused around value 
'0' (i.e. there are many features but each of them is not present in most instances). For 
example, 2-grams have a very high concentration of '0' fvals (features occur rarely) and 
pos3 the lowest (features occur more frequently). This distribution profile can therefore 
be characterized as very different from gensets: 'inverse Gaussian' distribution 
(high-low-high) with a skew toward value '0'. As for protein dataset (SCOP), we 
noticed that the distribution of approximately 80% of the numerical features enforces 
Gaussian distribution (low-high-low), i.e. fvals are focused in the middle range.  

 These two last factors (fqual and fval) will be shown below to be relevant in 
defining the strengths of different classifiers in terms of their feature / instance (kernel) 
weight functions respectively. Next we define the relevant differences between the 
selected classifiers. 

4 Classifier Differences 

We make the following relevant four divisions:  

Difference 1. Weighted dataset element is either instances (containing features) or 
features (in isolation). We differentiate between feature and instance weighing 
classifiers: 
(a) Feature-based classifiers (Decision Trees or Dtrees as a group name for Dstump, 
J48, REPTree, CART and PART classifiers from [8] and the well-known NB or Naive 
Bayes classifier [11]). These classifiers operate by estimating feature quality (or 
feature-class weights), e.g. probabilities that value TRUE in a binfeat dataset predicts 
class A vs class B. Formula for calculating feature quality however differs from 
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classifier to classifier. For instance, decision trees usually have two feature weight 
functions (linear and logarithmic) and corresponding NB formula is also presented 3: 

 Information Gain Ratio used in J48, REPTree and PART [8]: 
P(feature|class) = P(class) * log2 (P (class|feature)) 

 Gini Index used in CART decision tree [3]): P(feature|class) = 
P(class) * P(class|feature) 

 Naïve Bayes formula used in NB [11]: P(feature|class) = P(class) 
* P(class|feature) 

As we can see, the main difference between CART and Information Gain Ratio based 
classifiers, for example, is the feature weight function (linear vs logarithmic 
respectively). Note also that NB is comparable in terms of weight function (linear) to 
CART classifier (both have essentially the same formula), only differing in the number 
of features they include in the training model. When we look at the weight function 
curves (linear and logarithmic), we can categorize their adaptability with features of 
different fqual profiles as follows: linear weight function weights extremely low and 
high quality features more highly while logarithmic weight function weights 
middle-quality features more highly.   
(b) Instance-based classifiers (SVM or support vector machine [10], kNN or k nearest 
neighbor classifier [1] and FNN or feed-forward neural network [6]): 
Instance-weighing classifiers use feature weight estimations to calculate distances 
between training instances in projected Euclidean feature space (either original or 
augmented). The weight function therefore determines how much emphasis is put on 
class cores vs borders respectively (we call this 'core-border ratio'). We further 
investigate the most popular ('k' or instance similarity) functions for SVM. The 
function K(X,X') optimizing the class borders differentiate kernel types:  

  Linear (SVMlin): ||x·x'|| 
  Polynomial (SVMpoly): (gamma*||x·x'||)^degree) 
  Radial basis function or RBF (SVMrad): exp(gamma*||x-x'||)^2   

Kernel function notation K(x,x') denotes two-class borders (called hyperplanes) X 
and X' and the optimizing function K itself that seeks to maximize the distance between 
X and X'. Inside the kernel function, ||x·x'|| denotes the dot product of any two instances 
projected into Euclidian space [10].  

 The fundamental difference between the kernel functions can be described as 
follows:  polynomial function (x^2) upweighs the distance between high-difference 
instances (which by definition are concentrated in the class borders) and downweighs 
distances of instances with smallest differences (typically those located at class cores). 
In linear kernel (x), weights increase linearly with distance. When comparing these two 
kernels, polynomial kernel tends to equalize small differences (which are typical of 
core instances). Radial kernel does the opposite to polynomial kernel, upweighing  
small fval differences between instances (class core instances). Notice however that 
unlike linear and polynomial kernels, RBF does not transform features into nonlinear 

                                                 
3I.e. probability that a feature points to a class is probability of class in training data 

multiplied by logarithm / linear probability that a class points to a feature. 
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space:  instead distances between instances are rather calculated from the sum of raw 
differences in fvals (x-x')4. 

Difference 2. Original vs augmented feature spaces. We further distinguish 
classifiers based on whether original input features are used (kNN, NB, Dtree, FNN) or 
whether feature space is transformed or augmented (SVM). SVM attempts to discover 
instances on the class border and reweighing the rest of the instances in relation 
(distance) to them, resulting in augmented feature space where classes can then be 
linearly separated.  FNN in turn seeks to (gradually) place instances that are most 
related next to each other, attempting to classify instances in original feature space (as 
opposed to SVM). kNN also operates in original feature space, calculating pure 
Euclidean distances between instances. In other words, kNN does not transform feature 
weights like SVM does nor gradually iterate on instance similarity metric like FNN 
does. 

Difference 3. Training model size. can also distinguish between classifiers that 
include all features in their training model (kNN, NB, FNN) as opposed to those who 
reduce features in various ways (Dtree, SVM, Dstump). [12] calls these generative (all 
features) vs discriminative (some features) classifiers respectively. Dstump only picks 
a single (best) feature and Dtree picks a majority of features (depending on the set 
amount of pruning). SVM in a way also reduces dimensions since its training model is 
constructed on the 'support vectors' or the class-border instances in transformed feature 
space (and hence features occurring in other instances than these are significantly 
downweighed). NB and Dtree in turn both estimate feature quality using entropy of 
P(class|feature) utilize class priors P(class). There are therefore only two 
main differences between NB and Dtree: (a) Dtree creates a tree of conditional 
dependency (AND) rules consisting of several features pointing together to a class 
while NB uses feature weights in isolation (not expecting dependency between 
features, hence the name 'naive'). (b) Dtree discards features of poorest quality (under a 
configurable threshold) while NB uses all features.  

Difference 4. Method of model optimization. are two types of model optimizers (or 
'tree pruners' when dealing with Dtrees): (a) those that alter feature-class weights based 
on previous run misclassifications (error-based) and (b) those that generate multiple 
models and vote between them (vote-based). Additionally there are those that perform 
no pruning (let us call them 'single run based'). Within the decision tree family under 
scrutiny here, the corresponding classifiers are REPTree (error-based), CART 
(vote-based) and J48/PART (single run based). We further present and test two 
successful meta-learning schemes that implement these types of pruning (a) and (b) 
(these operate on the output of a selected base classifier): 

● Boosting [5] is an error-based iteration method. It produces a series of models 
(set by number of boosting rounds, here 19) trained on different bootstrapped 
portions of the training data and performs weighted voting between then. 
More essentially, Boosting upweighs the features in misclassified instances of 

                                                 
4The gamma parameter can in this respect be considered a fine-tuning parameter, altering the 

angle of the function curve only slightly.  
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each boosting round.  This is essentially the same procedure as with REPTree 
(reduced-error pruning). 

● Bagging ('Bootstrap Aggregating') [2]. Bagging can be considered as a 
vote-based method like CART. In training phase, training data is first split 
into training and test subsets (set by size of split or bag, here 80%). Then, a 
chosen base classifier is trained on one bag and tested on the remainder. All 
these submodels then vote  on their combined class decision. 

5   Test Results 5 

To produce results that are also robust to any test instance, we ran 10-fold 
cross-validation 10 times on each of the above classifiers (including Boosting and 
Bagging), resulting in 100 separate test results for each classifier and each dataset. 
Cross-validation evaluation in Weka [11] also keeps the same target class distribution 
for the folds as in the whole dataset (= stratified cross-validation) to ensure that the 
folds are maximally alike and do not thus influence the classification accuracy (nor 
classifiers' different capability to deal robustly with new test data) dramatically. This is 
incidentally why we were motivated to omit training-test set divergence as prediction 
factor (although it was shown in [12] to differentiate classifiers), since 100 tests on all 
classifiers serves to downplay the role of divergence (as opposed to the 5-fold 
single-iteration tests done by [12]). 

We here report results from tests of selected classifiers on gensets and proteins 
datasets. We also report a summary of OE tests, i.e. from utilizing prediction factors for 
the prediction of best classifier. Corresponding OE tests with WSD systems (both 
custom and Senseval 6) have already been reported in [9].   
(We discuss the significance of these results in next chapter). We can mention here 
further that OE gross and net gains with gensets were within range of those found for 
WSD datasets in [9], with net gain between 2-4%. For instance, accuracy for predicting 
between Dstump and NB was 0.89, which means that out of the potential (gross gain) 
of +4.1, a net gain of 0.89 * +4.1 = +3.2 was obtained. Prediction accuracies were again 
well above most frequent class baseline as they were in [9]. Best OE net gains with 
genset batches were in fact obtained from using at least one decision tree (CART). 
A few notes of these results right away: While NB wins SVM at 5-grain, SVM gains 
over NB both with lower and higher grains. Polynomial kernel of SVM begins to gain 
steadily over linear kernel after 10-grain (ends up at stable +7% at higher grains). 
Linear decision tree (CART) using cross-validation based pruning performs better than 
logarithmic unpruning J48 at any grain as it did with gensets. Some other grains 
showed similar trends and were therefore omitted. 
                                                 
5All classifier runs were made with Weka implementations of these algorithms [11] (Weka is 

downloadable from http://www.cs.waikato.ac.nz/ml/weka/). Default configurations were 
used: complexity parameter for SVM was 1.0, confidence parameter for Dtrees was 0.25 
(medium amount of tree pruning). Weka's AdaBoost.M1 was used for boosting with 10 
iteration rounds and bag size 80% for Weka's Bagging algorithm. 

6Evaluation framework for WSD systems (see www.senseval.org). 
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Table 2.  Average accuracies of classifiers at two different types of gensets. 

gensets-binfeat gensets-numfeat 

Bagged CART 60 Bagged CART 80 

Boosted CART 58 Boosted CART 78 

CART 58 CART 77 

SVMpoly 7 56 REPTree 76 

SVMlin 56 PART 75 

NB 55 J48 75 

REPTree 54 NB 69 

J48 54 Dstump 66 

PART 53 SVMpoly 65 

Dstump 50 SVMlin 65 

SVMrad 49 SVMrad 56 

Table 3.  Classifier results on different class grains of protein dataset. 

grain NB CART J48 SVMlin SVMpoly 

2 73 61 55 75 75  

5 72   62   57 72   66 

10 64 58 55 68 49 

50 32 42 36 43 49 

6  Classifier Strengths  

In this section, we look at classifier pairs to see where their strengths lie with regard to 
three prediction factors 8. 

Finding 1. SVM (linear kernel) vs NB form a hemispherical section in PN space. 
In all datasets involving linear SVM and NB so far investigated (see e.g. [9] for WSD 
systems, [4] for text classification systems), SVM tends to take C2-C1 corners (low-P) 
section of PN space over Dtrees and NB, leaving NB (and Dtree) C3-C4. At gensets we  

                                                 
7Using degree (exponent) of 2, i.e. Kernel function is thus ||x·x'||^2. 
8Due to space constraints, prohibiting the inclusion of dozens of images generated using 

RapidMiner [7], formations (20) will be posted to the following site (www.mysenseval.com) 
until they are published in my dissertation later this year. 
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Figure 1.  Three-dimensional space for representing classifier formations (= relative strengths) 
with P, N and nrfeat as dimensions. C stands for 'corner' (e.g. C4 is high-P but low-N, C2 is 
high-N but low-P) and the region remaining between corners we call 'midfield'. Shown are three 
types of formations: (a) single pear-shaped formation is called 'yin-yang formation' with one 
classifier taking the midfield (and the whole of C1 regardless of nrfeat), the other the P and N 
facets, (b) dotted line in the middle is called 'hemispherical formation' with one classifier taking 
P facet (C4) and the other N facet (C2), (c) two horizontal lines denote 'layered formation' (or 
layers), with one classifier taking both low and high nrfeats (regardless of P and N) and the other 
middle nrfeat range. (Cf. Discussion and [11] for another account on such 1-2-1 phenomena). We 
refer to these types of formations below when describing classifier performance differences.9 

found SVM to restrict itself more to C1 (shifting from C2). In [9] with WSD datasets, 
we showed the border of SVM and NB to be almost linear in PN space.   
 This hemispherical formation was not as clear with gensets (probably due to the 
relative weakness of both SVM and NB at gensets), SVM tends to lose at C2 cases 
more, but it can be seen. There are many separate explanations to this:  

● (a) SVM optimizes class-borders while NB makes no explicit difference 
between cores and borders. The higher the grain, the more borders there are, 
and so the better this expertise works. SVM is simply better equipped to 
classify cases where definition of borders are more crucial (i.e. high-grain 

                                                 
9 We should note that while these are approximations of the actual formations, they are 

nonetheless clear-cut enough to fall into one of these three main formation types. Also unless 
specifically mentioned, the formations were similar for both binfeats and numfeats. 
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cases including C1 where training is very scarce).  
● (b) SVM projects features into an augmented feature space with explicit 

definition of class borders, while NB retains the original feature space and 
weights features linearly using class-prior and entropy of features per class. 
Hence, we can consider the border between SVM and NB the border between 
linear and nonlinear feature space approaches.  

● (c) NB operates largely on its class-prior, SVM has no such prior but considers 
all classes as equally important to classify correctly. When grain is high (as it 
is at C2), this upweighing of more frequent classes no longer works as 
effectively while SVM gains in strength with added grain. Hence SVM tends 
to win at higher grained tasks.  

Furthermore, in recent WSD tests (with Senseval-4 English lexical sample dataset), we 
found the strengths of SVM (linear kernel, c=1.0) and NB different with regard to 
feature sets (number of word wins are quoted, note that if sum is not 100 rest have been 
tied):  

● 2-grams:  SVM 68, NB 23 
● 1-grams:  SVM 38, NB 4 (lot of ties) 
● pos3:   SVM 22, NB 35 

We can see that SVM performs best when features are numerous but of low individual 
quality (2-grams) and NB best when features are relatively few but occur frequently 
(pos3), with both excelling equally at 1-grams (which in terms of both nrfeat and 
average number of occurrences of features is between 2-grams and pos3). This is an 
indication that fval distribution does define strength of at least these classifiers: SVM 
seems to able to perform better when features are very numerous (> 200) but of low 
occurrence, NB vice versa. This is the most likely reason why SVM did not perform 
well with gensets (see Table 2) but did perform well with WSD [9]. 

Finding 2. Dtrees, NB and Dstump form layers.  We find clear-cut formation 
between these three classifiers per nrfeat factor. While Dstump is compatible with 
highest nrfeat, NB in the middle and Dtree (J48 in this case) takes the lowest nrfeat. We 
explain this as follows: Dtree operates on class-prior like NB, it additionally cuts 
(prunes) features of lowest quality, which would be essential in drawing class-borders. 
For this reason, Dtree cannot build a full-blown valid tree if nrfeat exceeds a certain 
limit (nrfeat=50) (we can call this 'tree building feasibility requirement') since at 
high-nrfeat, it becomes increasingly more difficult to find valid feature-class pairings 
(not to mention codependencies between them) (e.g. “IF rule 1 AND rule 2, THEN 
select class A”). With lower nrfeats, finding such interrelations between features is 
much easier (and the classification task itself is much easier), since then on average 
each feature is defined (validated) by many more training instances and thus the chance 
for an erroneous tree leaf propagating throughout the tree branch is significantly lower. 
Dstump in contrast is free of that tree-building feasibility requirement since it builds 
only a tree stump. Hence it works the better the more nrfeat is provided. As for why NB 
takes middle nrfeat layer between Dtree and Dstump, we found that this is the nrfeat 
range where both Dtree's and Dstump's strength degrades, i.e. is not particularly strong 
due to the abovementioned tree-building requirement. We need also to consider the fact 
that NB keeps all the features including those with lowest feature quality or fqual (does 
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not reduce dimensions like Dtree and Dstump), and so we can conclude that 
low-quality features are in a significant role at tasks with mid-nrfeat tasks (than at 
low/high-nrfeat tasks). This is why NB excels at such tasks in its own merit.  

Finding 3. Most decision tree pairs make yin-yang formation. This formation 
resulted from all four decision tree variants when paired up. As to which classifier takes 
higher nrfeat position in the yin-yang formation seems to depend on their ranking order 
of average accuracies per dataset (i.e. CART > REPTree > J48, see results in Table 2). 
This formation type at least is therefore determined by the relative strength of the 
classifier (i.e. stronger classifier takes P and N facets at high-nrfeat and weaker one the 
C1 corner and low-nrfeat midfield). This formation results also when ensembling a 
strong decision tree like CART with SVM. As for defining the strength of CART (best 
overall classifier at gensets), we can infer that the datasets where linear decision tree 
(CART) performs best must have a relative profusion of either low- and high-quality 
features, since those are upweighed by the linear feature weight function in CART (and 
respectively mid-quality features must be in slight relative majority where logarithmic 
classifiers J48, REPTree and PART perform best). Although we have not deployed a 
quantification of fqual (as mentioned in Prediction factors), we find no other reason 
than the profusion of mid-quality features as factor that must explain why CART as a 
classifier that upweighs mid-quality features is the superior (decision tree) classifier 
with gensets. 

Finding 4. Boosted vs Bagged decision trees make layers. This is the most 
clear-cut layer formation investigated in this study: Bagging takes high-nrfeat and 
Boosting low-nrfeat layer. To find causes for this layeredness, we ran boosters against 
baggers on two different decision trees with different weight functions (CART and J48 
as base classifiers). We also ran error-pruned (equivalent of Boosting) version of J48 
and tested two different values of the confidence parameter in J48, responsible for the 
amount of pruning. Pruned (CART, REPTree) vs unpruned decision trees (J48, PART) 
mentioned in Finding 3 were also obviously investigated. From these tests, we can 
confirm that both the amount of pruning and the type of pruning can be used to select 
best classifier for given dataset: pruning (especially cross-validation type) definitely 
works better at higher nrfeats. We can motivate this as follows: at high-nrfeat (which 
are tougher cases to classify anyway), feature-class pairings can only become fully 
validated, i.e. proper class cores and borders defined using those pairing, when the 
decision tree is trained multiple times on different subsets. Strength of Boosting in turn 
can be defined as follows: The primary issue for model optimization at low-nrfeat is 
determined by the number of outlier (misclassified) instances. Though not reported in 
the results, we found that the number of misclassified instances increases logistically as 
nrfeat is increased (i.e. classification accuracy is lower at high nrfeats). That is, at 
low-nrfeat there are simply fewer outlier instances. When Boosting (features and 
instances containing them) then upweighs them, they do not disturb the delicate weight 
balance of features occurring in the already correctly classified instances. Once the case 
becomes tougher as defined by added nrfeat, Boosting no longer can maintain this 
balance but gives overweight to misclassified instances (i.e. overfits the training 
model). 
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Finding 5. Linear and polynomial SVM kernels form no uniform type of 
formation in terms of PN+nrfeat factors. Strength of these kernels proved hard to 
define. Depending on whether gensets were binfeat or numfeat, the formation of the 
two kernels resembles either layers or hemispheres with some non-convex classifier 
regions. We explain this with their different instance weight (kernel) functions (see 
Classifier differences). From looking at the function curves of linear vs polynomial 
kernel (x vs x^2 as function of instance similarity in augmented Euclidean space), it is 
obvious that polynomial kernel by downweighing small distances tends to expect more 
core instances (i.e. core is wider and border is projected farther). In contrast, linear 
kernel expects rather a smooth transition from one class core to mutual border and over 
to another class core (i.e. that class cores and borders are of equal 'size'). Since this is 
their only difference, their respective strengths can be said to depend on this 
expectation.  

Therefore, we can conlude that the dataset's core-border ratio (defined above), i.e. 
how many core vs border instances there are on average per target class, determines the 
best kernel. With gensets, as said, core-border ratio close to 1 qualifies linear kernel 
(core is of equal 'size' as borders on average for all classes) and ratios above 1 qualify 
polynomial kernel (core is larger and needs therefore to fit more instances and the 
farther we go from that core the less important the instances are estimated to be). In 
other words, polynomial weight function can be said to perform feature-reduction by 
way of projecting the far-away instances  from the hyperplanes (class border) 
separating the target classes (cf. [11]).  

Core-border ratio is an elusive individual quality of the dataset which could be 
estimated from fqual factor: high-quality features correlate highly with class core 
(low-quality features with class borders). However, since fqual measure is out of focus 
in this paper, the only thing that can be said is the following: gensets that have no 
pronounced core-border division (gensets) have a core-border ratio of 1 (i.e. there are 
no real cores vs borders since all fvals converge to equal fval distribution resulting in 
almost equal fquals for all features). Real-world datasets (such as protein recognition or 
word sense disambiguation) in contrast tend to have a more clear-cut ('natural') sense of 
class cores vs borders and a definite division between high and low quality features 
(e.g. 1-grams and and money are low- and high-quality features pointing to one of the 
senses of the English noun bank).  

One kernel, however, is separable using these three prediction factors: radial kernel 
(with Gaussian weight function) sets apart from all other kernel types both in terms of 
formation and (lower) overall accuracy. We have confirmed that it performs best only 
at C4 cases in all datasets investigated and forms thus hemispherical formation with 
other kernel types. It seems only as long as class grain is low (2-3) and subsequently 
class borders are few, it is able to compete with other kernels and can even be superior 
to other kernel types.  In our interpretation, there are two separate reasons for this that 
can be tracked down to RBF kernel design: (a) RBF makes no nonlinear transformation 
(border optimization) of feature weights like the other kernel types. (b) Gaussian 
weight function behind RBF kernel upweighs (counter-intuitively) the smallest 
differences between instances and downweighs largest ones. This effectively leads to 
an equalization of differences between all instances, and subsequently cores and 
borders are diluted. However, as we know [6], Gaussian based weight functions 
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perform well at unsupervised (clustering) tasks where borders are virtually 
non-existent and emphasis is on finding the cores (of clusters).  The nature of 
classification vs clustering tasks is fundamentally different in the task outset: for 
clustering the algorithm mainly needs (and is able only) to create class cores, while 
classification algorithm is able to additionally define class borders from provided 
training data. We propose that  since with clustering tasks all distances are relatively 
small, even smaller than with 2-grams, Gaussian style accentuation of small differences 
is the reason why the Gaussian function has empirically proven the most popular 
instance similarity function for clustering methods such as SOM and FNN [6].  

7   Discussion and Conclusions 

In this paper, we have presented probable explanations for the regional formations 
(relative strengths) of classifiers deriving from the properties of classifiers themselves. 
Our findings suggest that best classifier prediction is very much possible. Many of the 
formations and phenomena explained here were left unexplained in [9], (which 
featured mainly the clearly hemispherical formation of SVM vs NB).  

 We showed that classifiers respond to varying values of prediction factors (P, N, 
nrfeat), which furthermore can largely be attributed to their algorithm design (e.g. 
weight functions, size of training model). For instance, differences in weight functions 
result in the observed layered or '1-2-1' formation where one classifier outperforms the 
other at low/high ranges of a factors and the other at mid range. (Cf. definition of Dtree 
vs NB difference defined in [12]: 1-2-1 formation was shown in terms of P and N 
factors and 1-2 formation in terms of nrfeat).  

To sum up the classifier formations, yin-yang formations result from ensembling 
decision tree pairs, layers occur when decision trees are ensembled with both NB and 
Dstump, hemisphere formations are mainly for SVM vs NB. SVM kernels make 
formations that depend on the core-border ratio of the dataset and cannot thus be well 
predicted using these three factors. As for prediction factors, the fact that feature-based 
classifiers are mostly separable by nrfeat (a feature-based factor) and instance-based 
classifiers (SVMs) are separable primarily by P and N (instance-based factors) is not 
very surprising after all. Instance-based classifiers kNN and FNN formed no 
discernible or convex region in PN+nrfeat space in either WSD or genset datasets. 

The generalization of these formations to three types help the designers of OE 
method  [9] to gain higher prediction accuracies and classifier developers to perhaps 
develop better classification algorithms that exploit this new-found knowledge of 
classifier regionality. Results from separate OE tests with gensets (this paper) and 
WSD datasets [9] result in standard 2-5% net gain (depending largely on selected best 
base classifiers which in turn depends on prediction factors). We can state, for 
example, that SVM and NB do not necessarily form maximal complements for all 
dataset types although they do for WSD [9] and text classification [4]. This is 
especially if the datasets are favorable to decision trees (as gensets are), in which case 
optimal ensembling of at least one decision tree comes into question.  

As to why SVM and NB perform best at WSD [9] and Dtrees (CART) at gensets is 
an issue for further research. However, we can consider the equal fval distribution of 
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gensets as opposed to unequal fval distribution (binary features in WSD and Gaussian 
distribution in protein datasets) as definitely related to that adaptability. The fact that 
SVM can compete with gensets-binfeat (which are similar to WSD and protein datasets 
in their respective fval distributions) is proof of SVM's adaptability to sparse datasets. 
We can further generalize classifier adaptability to types of datasets: since with 
real-world datasets there is a marked difference between low- and high-quality features 
on one hand and core vs border instances on the other, we can define the competence of 
SVM as deriving from its explicit class border definition. As for decision trees, pruning 
of either type certainly helps them to higher accuracy, which is seen from the 
superiority of CART, REPTree Boosting and Bagging over J48 and PART at both 
gensets and protein dataset. The reason for relative strength of Dtrees over both SVM 
and NB at gensets can most likely be attributed to the fval distribution or correct fqual 
estimation, which in our interpretation and that of [12] are the only relevant factors 
remaining unquantified in this study and [9]. This (dataset-independent definition of 
classifier strengths) is a subject of further study. 
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