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This paper presents a corpus{based approach to word sense disambiguation
that combines a number of Naive Bayesian classi�ers into an ensemble that
performs disambiguation via a majority vote. Each of the member classi�ers
is based on collocation and co{occurrence features found in varying sized
windows of context. This approach is motivated by the observation that, in
general, enhancing the feature set or learning algorithm used by a corpus{
based approach does not improve disambiguation accuracy beyond what can
be attained with shallow lexical features and the Naive Bayesian classi�er.
Despite the simplicity of this approach, empirical results disambiguating the
widely studied nouns line and interest show that such an ensemble achieves
levels of accuracy comparable to the best previously published results.

1 Introduction

Word sense disambiguation is the process of selecting the most appropriate
meaning for a word, based on the context in which it occurs. For example,
bill has several possible meanings; a piece of currency, pending legislation, a
bird jaw, etc. However, when used in the context of The Senate bill is under
consideration, a human reader immediately understands that bill is being
used in the legislative sense. Humans posses a lifetime of knowledge about
the world and experience with language and rarely need to consciously think
about sense disambiguation. However, a computer program attempting to
perform the same task faces a di�cult problem since it does not have the
bene�t of innate common{sense or linguistic knowledge.

Rather than attempting to provide computer programs with real{world
knowledge comparable to that of humans, natural language processing has
turned to corpus{based methods. These approaches use techniques from
statistics and machine learning to induce models of language usage from
large samples of text. These models are trained to perform particular tasks,
usually via supervised learning. In this framework, the learner is presented
with a number of examples that demonstrate the correct outcome for a



problem. In word sense disambiguation, these examples consist of a number
of sentences where each instance of an ambiguous word has been manually
annotated with a label that denotes its proper sense.1

A sense{tagged corpus must be converted into a form suitable for a
supervised learning algorithm. This requires that each sense{tagged usage
of an ambiguous word be represented by a set of features that characterize
the context in which the word occurs. Any properties of the ambiguous word
and the surrounding context that are relevant to disambiguation should be
identi�ed and represented as features. Given the exibility and complexity
of human language, there is potentially an in�nite set of features that could
be utilized. However, in corpus{based approaches features usually consist
of information that can be extracted or inferred fairly directly from the
text, without relying on extensive amounts of real{world knowledge. These
typically include the part{of{speech of surrounding words, the presence of
certain key words within some window of context, and various syntactic
properties of the sentence.

This paper continues with an overview of a proposed ensemble method-
ology for disambiguation. Then the Naive Bayesian classi�er is introduced,
as are the features used to represent the context in which ambiguous words
occur. This is followed by a description of the proposed methodology for
formulating the ensemble. Then, the line and interest data is described.
Experimental results disambiguating these words with an ensemble of Naive
Bayesian classi�ers are shown to rival previously published results. This pa-
per closes with a discussion of the choices made in formulating this method-
ology.

2 Ensembles for Corpus{Based Disambiguation

This paper presents a corpus{based approach that results in high accuracy
by combining a number of very simple classi�ers into an ensemble that per-
forms disambiguation via a majority vote. This approach is motivated by
the observation that, in general, enhancing the feature set or learning algo-
rithm of a corpus{based approach does not improve disambiguation accu-
racy beyond what can be obtained with shallow lexical features and a basic
supervised learning algorithm.

1The process of creating these examples is referred to as sense{tagging and results in
a sense{tagged corpus.



For example, rather than learning a representative model of a sense{
tagged corpus, a Naive Bayesian classi�er [Duda and Hart, 1973] is based
on certain blanket assumptions about the interactions among features in
a corpus. Despite such assumptions, this proves to be among the most
accurate techniques in comparative studies of corpus{based word sense dis-
ambiguation methodologies. These studies represent the context in which
each instance of a sense-tagged word occurs with a variety of features in-
cluding part{of{speech and other grammatical information for surrounding
words, as well as lexical features describing co-occurrence and collocation
of words. However, when the contribution of each type of feature to over-
all accuracy is analyzed (eg. [Ng and Lee, 1996]), shallow lexical features
such as co{occurrence and collocations prove to be stronger contributors to
accuracy than do deeper, linguistically motivated features.

It has also been demonstrated in a wide range of domains that the com-
bined accuracy of an ensemble of multiple classi�ers is often signi�cantly
greater than that of any of the individual classi�ers that make up the ensem-
ble (e.g., [Dietterich, 1997]). This observation, combined with the previous
history of disambiguation success using shallow lexical features and Naive
Bayesian classi�ers, suggests that disambiguation accuracy might best be
improved by combining the output of a number of simple, yet accurate,
classi�ers into an ensemble.

2.1 Naive Bayesian Classi�ers

In general, corpus{based statistical approaches cast natural language pro-
cessing tasks as classi�cation problems. The learned probabilistic models
indicate the most likely value for a variable that represents the membership
category or classi�cation of an event, given the values of other feature vari-
ables that represent the context in which that event occurs. In word sense
disambiguation the classi�cation variable represents the sense of a particular
word and the context in which it occurs is represented by feature variables.

A Naive Bayesian classi�er assumes that all the feature variables repre-
senting a problem are conditionally independent given the value of a clas-
si�cation variable. In this paper, the context in which an ambiguous word
occurs is represented by the feature variables (F1; F2; : : : ; Fn) and the sense
of the ambiguous word is represented by the classi�cation variable (S). In
this paper, all feature variables Fi are binary and represent whether or not
a particular word occurs within some number of words to the left or right
of an ambiguous word, i.e., a window of context. For a Naive Bayesian clas-



si�er, the joint probability of observing a certain combination of contextual
features with a particular sense is expressed as:

p(F1; F2; : : : ; Fn; S) = p(S)
nY

i=1

p(FijS) (1)

The parameters of this model are p(S) and p(FijS). The su�cient statis-
tics, i.e., the summaries of the data needed for parameter estimation, are
the frequency counts of the events described by the interdependent variables
(Fi; S). In this paper, these counts are the number of sentences in the sense{
tagged text where the word represented by Fi occurs within some speci�ed
window of context of the ambiguous word when it is used in sense S.

Any parameter that has a value of zero indicates that the associated
word never occurs with the speci�ed sense value. These zero values are
smoothed by assigning them a very small default probability. Once all the
parameters have been estimated, the model has been trained and can be used
as a classi�er to perform disambiguation by determining the most probable
sense for an ambiguous word, given the context in which it occurs.

2.2 Representation of Context

The contextual features used in this paper are binary and indicate if a given
word occurs within some number of words to the left or right of the am-
biguous word.2 No additional positional information is contained in these
features; they simply indicate if the word occurs within some number of
surrounding words.

Punctuation and capitalization are removed from the windows of context.
However, there is no stop{list used to remove non{content words. This is
a variation on the frequently used bag{of{words feature set, where a single
window of context includes words that occur to both the left and right of
the ambiguous word. In this work there are two windows of context, one
representing words that occur to the left of the ambiguous word and another
for those to the right. The size of these windows are 0, 1, 2, 3, 4, 5, 10, 25,
and 50 words.

2Words that occur within 1 or 2 positions of the ambiguous word are considered collo-
cates, while those that occur further away are co{occurrences.



2.3 Ensembles of Naive Bayesian Classi�ers

The �rst step in developing an ensemble is to train a separate Naive Bayesian
classi�er for each of the 81 possible combination of left and right window
sizes:

for left_window_size = (0, 1, 2, 3, 4, 5, 10, 25, 50)

for right_window_size = (0, 1, 2, 3, 4, 5, 10, 25, 50)

train Naive_Bayes (left_window_size,right_window_size)

end for

end for

Thus, Naive Bayes (l,r) represents a classi�er where the model parame-
ters have been estimated based on frequency counts of shallow lexical fea-
tures from two windows of context; one including l words to the left of the
ambiguous word and the other including r words to the right. Note that
Naive Bayes (0,0) includes no words to the left or right; this classi�er acts
as a majority classi�er that assigns every instance of an ambiguous word to
the most frequent sense in the training data. Once the individual classi�ers
are trained they are evaluated using previously held{out test data.

A key step in creating an ensemble is selecting the classi�ers to include as
members. The approach here is to group the 81 Naive Bayesian classi�ers
into general categories representing the sizes of the windows of context.
There are three such ranges; collocate corresponds to windows 0, 1 and 2
words wide, mix to windows 3, 4, and 5 words wide, and co-occur to windows
10, 25, and 50 words wide. There are nine possible range categories since
there are separate left and right windows. For example, Naive Bayes(1,3)
belongs to the range category (collocate, mix) since it is based on a one word
window to the left and a three word window to the right. The most accurate
classi�er in each of the nine range categories is selected for inclusion in the
ensemble. Each of the nine member classi�ers votes for the most probable
sense given the particular context represented by that classi�er; the ensemble
disambiguates by assigning the sense that receives a majority of the votes.

3 Experimental Data

The line data was created by [Leacock, Towell, and Voorhees, 1993] by tag-
ging every occurrence of line in the ACL/DCI Wall Street Journal corpus
and the American Printing House for the Blind corpus with one of six possi-
ble WordNet senses. These senses and their frequency distribution are shown



sense frequency

product 2218
written or spoken text 405
telephone connection 429
formation of people or things; queue 349
an arti�cial division; boundary 376
a thin, exible object; cord 371

total 4148

Figure 1: Distribution of senses for line { the experiments in this paper and
previous work use a uniformly distributed subset of this corpus, where each
sense occurs 349 times.

in Figure 1. This data has since been used in studies by [Mooney, 1996],
[Towell and Voorhees, 1998], and [Leacock, Chodorow, and Miller, 1998]. In
previous work and in this paper, a subset of the corpus is utilized such that
each sense is uniformly distributed; this reduces the accuracy of the majority
classi�er to 1/6. The uniform distribution is created by randomly sampling
349 sense{tagged examples from each sense, resulting in a training corpus
of 2094 sense{tagged sentences.

The interest data was created by [Bruce and Wiebe, 1994] by tagging
all occurrences of interest in the ACL/DCI Wall Street Journal corpus with
senses from the Longman Dictionary of Contemporary English. The exper-
iments in this paper use the entire 2,368 sense{tagged sentence corpus. The
senses and their frequency distribution are shown in Figure 2. Unlike line,
the sense distribution is skewed; the majority sense occurs in 53% of the
sentences, while the smallest minority sense occurs in less than 1%.

4 Experimental Results

Eighty-one Naive Bayesian classi�ers were trained and tested with the line
and interest data. Ten{fold cross validation was employed; all of the sense{
tagged examples for a word were randomly shu�ed and divided into ten
equal folds. Nine folds were used to train the Naive Bayesian classi�er while
the remaining fold served as a held{out test set to evaluate the learned
classi�ers. This process is repeated ten times so that each fold serves as
the test set once. The average accuracy of the individual Naive Bayesian



sense frequency

money paid for the use of money 1252
a share in a company or business 500
readiness to give attention 361
advantage, advancement or favor 178
activity, etc. that one gives attention to 66
quality of causing attention of be given to 11

total 2368

Figure 2: Distribution of senses for interest { the experiments in this paper
and previous work use the entire corpus, where each sense occurs the number
of times shown above.

classi�ers across the ten folds is reported in Figures 3 and 4.3

Each classi�er is based upon a distinct representation of context since
each employs a di�erent combination of right and left window sizes. The
size and range of the left window of context is indicated along the horizontal
margin in Figures 3 and 4 while the right window size and range is shown
along the vertical margin. Thus, the boxes that subdivide each �gure corre-
spond to a particular range category. The classi�er that achieves the highest
accuracy in each range category is included as a member of the ensemble;
the accuracy these attain are shown in italics. In case of a tie, as in the
(mix,mix) range for interest, the classi�er with the smallest total window of
context is included in the ensemble.

The most accurate single classi�er for line is Naive Bayes (4,25), which
attains accuracy of .836. The accuracy of the ensemble created from the
most accurate classi�er in each of the range categories is .883, an improve-
ment of nearly 5% in accuracy. The single most accurate classi�er for interest
is Naive Bayes(4,1), which attains accuracy of .861. The ensemble approach
reaches .894, an improvement of just over 3%. The increase in accuracy
achieved by both ensembles over the best individual classi�er is statistically
signi�cant, as judged by McNemar's test with p = :01.

3The standard deviations were between .01 and .025 and are not shown given their
relative consistency.



50 .628 .734 .798 .820 .834 .828 .828 .825 .834
co{occur 25 .627 .737 .797 .818 .836 .831 .825 .833 .833

10 .620 .745 .805 .819 .829 .828 .833 .832 .835
5 .610 .746 .796 .806 .816 .819 .823 .820 .830

mix 4 .597 .728 .798 .815 .819 .821 .818 .821 .820
3 .584 .727 .790 .815 .825 .830 .817 .814 .817
2 .534 .714 .792 .813 .820 .818 .814 .810 .811

collocate 1 .416 .680 .779 .790 .798 .793 .800 .806 .809
0 .137 .583 .734 .766 .786 .788 .788 .791 .801

0 1 2 3 4 5 10 25 50
collocate mix co{occur

Figure 3: Accuracy of Naive Bayesian classi�ers for line - the left window
size is on the horizontal and the right window size is on the vertical { the
accuracy of an ensemble based on the most accurate classi�er from each
range category is .883

50 .735 .803 .819 .828 .826 .825 .815 .802 .806
co{occur 25 .733 .802 .822 .828 .825 .825 .814 .802 .804

10 .745 .824 .841 .848 .845 .844 .823 .807 .807
5 .731 .828 .852 .858 .853 .845 .833 .811 .810

mix 4 .717 .834 .850 .851 .843 .844 .829 .806 .804
3 .699 .835 .857 .858 .858 .850 .834 .810 .804
2 .658 .832 .852 .858 .859 .844 .826 .803 .802

collocate 1 .627 .824 .851 .854 .861 .847 .822 .807 .801
0 .529 .721 .773 .779 .785 .766 .769 .760 .754

0 1 2 3 4 5 10 25 50
collocate mix co{occur

Figure 4: Accuracy of Naive Bayesian classi�ers for interest - the left window
size is on the horizontal and the right window size is on the vertical { the
accuracy of an ensemble based on the most accurate classi�er from each
range category is .894



accuracy method feature set

Naive Bayesian Ensemble 89% ensemble of 9 varying left & right b-o-w
Ng & Lee, 1996 87% nearest neighbor p-o-s, morph, co-occur

collocates, verb-obj
Bruce & Wiebe, 1994 78% model selection p-o-s, morph, co{occur
Pedersen & Bruce, 1997 78% decision tree p-o-s, morph, co{occur

74% naive bayes

Figure 5: Comparison to previous results for interest

accuracy method feature set

Naive Bayesian Ensemble 88% ensemble of 9 varying left & right b-o-w
Towell & Voorhess, 1998 87% neural net local & topical b-o-w, p-o-s
Leacock et. al., 1998 84% naive bayes local & topical b-o-w, p-o-s
Leacock et. al., 1993 76% neural net 2 sentence b-o-w

72% content vector
71% naive bayes

Mooney, 1996 72% naive bayes 2 sentence b-o-w
71% perceptron

Figure 6: Comparison to previous results for line

4.1 Comparison to Previous Results

These experiments use the same sense{tagged corpora for interest and line
as previous studies. A brief summary of the results for interest is shown
in Figure 5 and for line in Figure 6. The accuracy attained by the Naive
Bayesian ensemble rivals that of any of the other approaches. However,
due to variations in experimental methodologies,4 it can not be concluded
that the di�erences among the most accurate methods are statistically sig-
ni�cant. However, this result is encouraging for Naive Bayesian ensembles
since, despite their simplicity, they attain high accuracy that is comparable
to the best published results for this data.

4.1.1 Interest

The interest data was �rst studied by [Bruce and Wiebe, 1994]. They em-
ploy a representation of context that includes the part{of{speech of the two

4For example, in this work 10-fold cross validation is employed to assess accuracy
while [Ng and Lee, 1996] train and test using 100 randomly sampled sets of data. Similar
di�erences in training and testing methodology exist among the other studies.



words surrounding interest, a morphological feature indicating whether or
not interest is singular or plural, and the three most statistically signi�cant
co{occurring words in the sentence with interest, as determined by a test of
independence. These features are abbreviated as p-o-s, morph, and co{occur
in Figure 5. A decomposable probabilistic model is induced from the sense{
tagged corpora using a backward sequential search where candidate models
are evaluated with the log{likelihood ratio test. The selected model was
used as a probabilistic classi�er on a held{out set of test data and achieved
accuracy of 78%.

The interest data was included in a study by [Ng and Lee, 1996], who
represent the context of an ambiguous word with the part{of speech of three
words to the left and right of interest, a morphological feature indicating if
interest is singular or plural, an unordered set of frequently occurring key-
words that surround interest, local collocations that include interest, and
verb{object syntactic relationships. These features are abbreviated p-o-s,
morph, co{occur, collocates, and verb{obj in Figure 5. A nearest{neighbor
classi�er was employed and achieved an average accuracy of 87% over re-
peated trials using randomly drawn training and test sets.

[Pedersen, Bruce, and Wiebe, 1997] and [Pedersen and Bruce, 1997] uti-
lize the original Bruce and Wiebe feature set for the interest data. The �rst
compares a range of probabilistic model selection methodologies and �nds
that none outperform the Naive Bayesian classi�er, which attains accuracy
of 74%. The second compares a range of machine learning algorithms and
�nds that a decision tree learner (78%) and a Naive Bayesian classi�er (74%)
are most accurate.

4.1.2 Line

The line data was initially studied by [Leacock, Towell, and Voorhees, 1993].
They evaluate the disambiguation accuracy of a Naive Bayesian classi�er, a
content vector, and a neural network. The context of an ambiguous word is
represented by a bag{of{words where the window of context is two sentences
wide. This feature set is abbreviated as 2 sentence b-o-w in Figure 6. When
the Naive Bayesian classi�er is evaluated words are not stemmed and capi-
talization remains. However, with the content vector and the neural network
words are stemmed and words from a stop{list are removed. They report
no signi�cant di�erences in accuracy among the three approaches; the Naive
Bayesian classi�er achieved 71% accuracy, the content vector 72%, and the
neural network 76%.



The line data was studied again by [Mooney, 1996], where seven di�er-
ent machine learning methodologies are compared. All learning algorithms
represent the context of an ambiguous word using the bag{of{words with a
two sentence window of context. In these experiments words from a stop{
list are removed, capitalization is ignored, and words are stemmed. The two
most accurate methods in this study proved to be a Naive Bayesian classi�er
(72%) and a perceptron (71%).

The line data was recently revisited by both [Towell and Voorhees, 1998]
and [Leacock, Chodorow, and Miller, 1998]. The former take an ensemble
approach where the output from two neural networks is combined; one net-
work is based on a representation of local context while the other repre-
sents topical context. The latter utilize a Naive Bayesian classi�er. In both
cases context is represented by a set of topical and local features. The
topical features correspond to the open{class words that occur in a two
sentence window of context. The local features occur within a window of
context three words to the left and right of the ambiguous word and in-
clude co{occurrence features as well as the part{of{speech of words in this
window. These features are represented as local & topical b-o-w and p-o-
s in Figure 6. [Towell and Voorhees, 1998] report accuracy of 87% while
[Leacock, Chodorow, and Miller, 1998] report accuracy of 84%.

5 Discussion

The word sense disambiguation ensembles in this paper have the following
characteristics:

The members of the ensemble are Naive Bayesian classi�ers. In
recent years the Naive Bayesian classi�er has emerged as a consistently
strong performer in a wide range of comparative studies of machine learning
methodologies. A recent survey of such results, as well as possible expla-
nations for its success, is presented in [Domingos and Pazzani, 1997]. A
similar �nding has emerged in word sense disambiguation, where a num-
ber of comparative studies have all reported that no method achieves any
greater accuracy than the Naive Bayesian classi�er.

The context in which an ambiguous word occurs is represented

by a combination of co{occurrence and collocational features ex-
tracted from varying sized windows of surrounding words. Co{



occurrence and collocational features are recognized as potent sources of
disambiguation information and have been widely employed. While many
other types of features have also been studied, it isn't clear that they o�er
substantial advantages over these shallow lexical features for disambigua-
tion. For example, [Ng and Lee, 1996] report that local collocations alone
achieve 80% accuracy disambiguating interest, while their full set of features
result in 89%. Preliminary experiments conducted for this paper, where
feature sets included collocates, co{occurrences, part{of{speech and gram-
matical information for surrounding words, showed that no combination of
features resulted in disambiguation accuracy higher than that achieved with
collocations and co{occurrences.

Member classi�ers are selected for the ensembles based on their
performance relative to others with comparable window sizes.

The most accurate classi�er from each of nine possible category ranges is
selected as a member of the ensemble. This is based on preliminary exper-
iments that showed that member classi�ers with similar sized windows of
context often result in little or no overall improvement in disambiguation
accuracy. This was expected since slight di�erences in window sizes lead to
roughly equivalent classi�ers that have little opportunity for collective im-
provement. For example, an ensemble was created for interest using the nine
classi�ers in the range category (medium, medium). The accuracy of this
ensemble was .841, slightly less than the most accurate individual classi�ers
in that range which achieved accuracy of .858.

Early experiments also revealed that an ensemble based on a majority
vote of all 81 classi�ers performed rather poorly. The accuracy for interest
was approximately 81% and line was disambiguated with slightly less than
80% accuracy. The lesson taken from these results was that an ensemble
should consist of classi�ers that represent as di�erently sized windows of
context as possible; this reduces the impact of redundant errors made by
classi�ers that represent very similarly sized windows of context. The ulti-
mate success of an ensemble depends on the ability to select classi�ers that
make complementary errors. This is discussed in the context of combining
part{of{speech taggers in [Brill and Wu, 1998]. They provide a measure for
assessing the complementarity of errors between two taggers that could be
adapted for use with larger ensembles such as the one discussed here, which
has nine disambiguators/members.



A majority vote of the member classi�ers determines the outcome

of the ensemble. In this paper ensemble disambiguation is based on a
simple majority vote of the nine member classi�ers. In preliminary experi-
ments a more complex scheme of weighting the votes by the estimated joint
probability of the Naive Bayesian classi�er was also employed. However,
accuracy under a weighted vote was poor. For interest, the weighted vote
resulted in accuracy of .832 while for line it resulted in accuracy of .820.
Recall that the simple majority vote resulted in accuracy of .894 for interest
and .883 for line.

6 Conclusions

This paper shows that word sense disambiguation accuracy can be improved
by combining a number of simple classi�ers into an ensemble. A methodol-
ogy for formulating an ensemble of Naive Bayesian classi�ers is presented,
where each member classi�er is based on co{occurrence and collocation fea-
tures extracted from a di�erent sized window of context. This approach was
evaluated using the widely studied nouns line and interest, which are dis-
ambiguated with accuracy of 88% and 89%, which rivals the best previously
published results.
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